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ABSTRACT 

We derive the closed form expression for the probability of bit error in direct detection, 

dense wavelength division multiplexed (WDM) fiber optic systems employing 00K 

as the modulation technique and single-cavity Fabry-Perot (FP) filters in the receiver 

as demultiplexers. The expression is derived in the time domain using the impulse 

response of the single-cavity Fabry-Perot filter and the complex baseband equivalent 

of the received dense WDM optical signal. The two are convolved to produce the FP 

filtered output signal s(t). We then integrate 7Z\s(t)\2 over one bit period, where TZ 

is the responsivity (A/W) of the photodetector following the FP filter in the receiver 

structure. This integral is the deterministic X of the decision variable Y where 

Y = X + N. N is the postdetection thermal noise (amplifier generated), a zero mean 

Gaussian random variable with variance N0T where N0 is the noise current spectral 

density (A2/Hz). Both X and N are combined into an expression for probability of 

bit error. A limited case of the complete model is assumed, and probability of bit 

error graphs are generated. 
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I. INTRODUCTION 

Direct detection optical frequency division multiple access (FDMA) networks 

are increasingly becoming an attractive alternative to coherent optical FDMA net- 

works [1]. One of the primary reasons is that noncoherent systems do not require 

expensive synchronization circuitry for proper operation. Also, present optical filter 

technology allows designers to closely pack the channels in frequency, resulting in 

dense wavelength division multiplexed (WDM) systems that can provide aggregate 

bit rates of many terabits per second (IT b/sec = 1012 bits/sec) [2]. The possible 

uses of dense WDM systems are many (local area networks, undersea surveillance, 

etc.), but one can easily see the enormous economic benefit and importance of being 

able to transmit aggregate bit rates of terabits per second on a single fiber without 

the economic burden of expensive synchronization circuitry imposed by a coherent 

system. In this thesis, we derive the complete closed form expression in the time 

domain for the probability of bit error of dense WDM systems employing 00K as 

the modulation technique and single-cavity Fabry-Perot (FP) filters as channel de- 

multiplexers. In our derivation, we make no simplifying mathematical assumptions 

and use the impulse response of the single-cavity Fabry-Perot filter, which is an in- 

finite sum of delayed impulses whose intensities decrease geometrically. The results 

of our work are presented in Chapters II, III, and IV. A detailed derivation of the 

deterministic signal component of the decision variable appearing at the output of 

the integrator of the Channel 0 (Channel of Interest) receiver appears in Appendix A. 

See Fig. 1 for a sketch of this receiver. Appendix B shows how the complete model 

is reduced for a limited case and how probability of bit error calculations are made 

for this limited case. Appendix C shows the strategy and programs used to obtain 

the probability of bit error for four values of free spectral range-bit period product 



and a given range of signal-to-noise ratios. It is interesting to note at this point 

that, although the model presented in this thesis is strictly derived, complete, and 

done without approximation, its major weakness is that it is computationally very 

intensive. In fact, it takes several months of computer time on several SPARC-10 

workstations working simultaneously to generate a single graph of the probability of 

bit error for this system. At the end of the thesis we conclude that, although our 

model is mathematically correct, a discrete time approach to the problem is probably 

a more efficient investigative tool in analyzing the performance of dense WDM fiber 

optic networks. 

r(<) s(t) = r0(t) - r(t) * h(t) 

if 
DENSE 
WDM . 

SIGNAL 

FABRY 
PEROT 
FILTER 

PHOTO 

DETECTOR 

Decision Variable Y 

Y = X + N 

AMPLIFIER MPLIF 

/ Jo 

THRESHOLD 

DETECTOR 

DATA 

POSTDETECTION 
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n(t) 

Photodetector Output Current = 7Z\s(t)\2 

X = 71 f   \s(t)\2dt N= f   n(t)dt 
Jo Jo 

Figure 1:    Channel 0 OOK receiver structure. 



II. ANALYSIS 

An OOK, dense WDM system utilizing single-cavity Fabry-Perot (FP) optical 

niters as demultiplexers consists of M + 1 transmitters (fixed wavelength lasers) con- 

nected over a fiber link to M + l receivers. Each receiver contains a frequency selective 

Fabry-Perot filter to demultiplex one of the M + l channels. In our derivation of the 

closed form expression for the probability of bit error for this system, M is the even 

number of adjacent channels symmetrically placed in frequency around the Channel 

of Interest (Channel 0) whose carrier is transmitted on an arbitrary wavelength Aa. 

The Channel 0 receiver is shown in Fig. 1. The dense WDM optical signal is received 

by the Fabry-Perot filter tuned to Aa, which allows the Channel 0 data signal to pass 

and rejects signals in the adjacent channels. A photodetector then converts the fil- 

tered optical signal to a current. The photodetector has an arbitrary responsivity 1Z 

(A/W). The current is then amplified by a low-noise amplifier which adds a postde- 

tection thermal noise n(t) with two-sided current spectral density N0 (A2/Hz). Both 

the signal and noise currents are now passed to an integrator (low pass filter). The 

output of the integrator is the decision variable Y, which is compared to a threshold 

Vr to determine whether an "0" or "1" was sent. 

A.    THE DENSE WDM SIGNAL AT THE INPUT OF THE FABRY- 

PEROT FILTER: r(t) 

Again we note that Channel 0 is our channel of interest.   We can write the 

expression for the Channel 0 data signal in the complex baseband as 

bo(t)=   £   b0,iPT(t-iT) (1) 
«'= — I/o 

where T is the data bit period (s), and 60,i is the bit in Channel 0 during the time 

period [zT, (i + l)T]. Note that b0,i G {0,1}. L0 is a positive integer which represents 



the number of bits in Channel 0 that are trailing the detected bit or bit of interest 

&o,o- Pr{t) is the rectangular pulse function defined as 

f*\      i !. 0<t<T } 
PT{t) = { 0, otherwise  ) (2) 

Channel k is any arbitrary adjacent channel. There are M adjacent channels placed 

symmetrically in frequency around Channel 0. M is an even integer. The indices for 

k are as follows k = -M/2, • ■ •, -1,1, ■ ■ •, +M/2.   We may now write the complex 

baseband expression for the kth channel data signal 

o 
h(t)=  £ bkAe^pT{t-lT) (3) 

l=-L 

where uk is the radian frequency spacing between Channel 0 and Channel k and 

ijJk — -~UJ_k. We have already defined the pulse function pr(t) in Eq. (2) above. L is 

a positive integer which represents the number of bits in Channel k which trail the 

bit in Channel k that is the 0th bit, bkfl. We now note that bk,t is the bit in Channel 

k during the time period [IT, (£ + 1)T] and that 6M G {0, eP*"}, where <j>k is Channel 

Fs phase offset from Channel 0. <f)k is assumed to be a uniformly distributed random 

variable between 0 and 2ir (<f>k ~ U[0,2TT]). We can now use Eqs. (1) and (3) to write 

the complex baseband equivalent dense WDM received optical signal which appears 

at the input of the Channel 0 Fabry-Perot filter (see Fig. 1) 

+M/2 

r(t) = y/Pbo(t)+      £      VPbk(t) (4) 

k=-M/2 

and 
/    0 +M/2 o \ 

r(t) = VP[Y1  KPT{t - iT) +      E       E hte^pT(t - IT) (5) 
Xi=-L° k=-M/2   l=~L J 

where P is the received optical power. 



B.    THE OPTICAL OUTPUT OF THE FABRY-PEROT FILTER: 

s(t) = r0(t) 

To arrive at the optical output of the Fabry-Perot filter s(t), we must convolve 

the input signal r(t) with the impulse response h(t) of the filter 

s(t) = r0(t) = r(t) * h(t) = h(t) * r(t) (6) 

First, however, we need the expression for h(t).  The Fabry-Perot filter is a causal, 

linear, time-invariant (LTI) system. It can be shown [1] that 

MO = (i-/0XyM*-f (7) 
3=0 

where S(t) is the Dirac Delta Function defined in two parts 

' 0, t< 0 1 6(t) = 
0, t > 0 

(8a) 

and 
r0+ 
/    6{t)dt = 1 (8b) 

Jo- 

Looking at Eq. (7), we note that p is the power reflectivity of the single-cavity Fabry- 

Perot filter and ß is the filter's free spectral range (Hz). Performing the convolution 

operation yields the following (see Appendix A for details) 

s(t)    =   r0(t) = y/P (1 - p) 

K 

Y;P3boßPT [t- 
3=0 ßt 

»BW 

-1      oo 

+ E E^V.-PT *-f-*r 
t'=-Lo 3=0 ß 

SJSl{t) 

+M/2 0       oo / \ 

+   E    E E (fihkAJ^-WpT V--a-w) 
k=-M/2 

k?0 

(9) 

*ACl(t) 



where Sß(t) is the desired signal (signal of interest), sjsi(t) is the intersymbol inter- 

ference signal, and sAci(t) is the adjacent channel interference signal. Then 

s(t) = r0(t) = K(sB(t) + siSI(t) + sAci(t)) (10) 

We are now interested in writing an expression for s(t) during the detection 

interval 0 < t < T. We do this by sketching Sß(t) from Eq. (9) and then writing 

another expression which accounts for how the rectangular pulses behave during the 

detection interval. We then sketch the pulse functions for the first three values of i 

for sisi(t) in Eq. (9). We note how they appear during the detection interval, and 

recognizing a pattern, we write another expression for sISI(t) for 0 < t < T. A similar 

process is followed to arrive at SAci{t) for 0 < t < T. We now present Sß(t), S[si(t), 

and SAci(t) for 0 < t < T (see Appendix A for details) 

/ \ 

9^ 
7-1 

sB{t) = J2p9f)0,0PT 
3=0 

V 

T 

M 
t 

P. 
for    0 < t < T (11) 

/ 

where q = T/(l/ß) = ßT is an integer. Recall that T is the data bit period (s), and 

ß is the single-cavity Fabry-Perot filter's free spectral range (Hz). 

ßT(t)     \ 
sisi(t)=   £ 

i=-LQ 

(-i7)-l 

Yl     P
3
KPT 

.3=-(l+t-)g+l 

/ 

+      H     pgb0,iPT 
3=-i<l 

T 

9 + k 
,     ß     t 

g + iq 

, ß 

9 + {l+i)q/ 

\ 

,    for 0 < t < T    (12) 

/ 



/ 
+M/2 

SACl{t)     = S 
k=-M/2 

k^O 

qJ2p9h,oe^{t-{9/ß))PT 
lg=0 

\ 

'T_9_\Y     \, 
w    ß, 

+ £ 
(~ff    p^e^-^PT (-^ 

e=-L lg=-(i+e)q+i , <? + (!+%, 

/ 

Pr 

V 
r 

,   ß   , 
, ß > 

\ 

) ) 

,    for 0 < t < T (13) 

Recall Eqs. (9) and (10) where 

s(t) = K(sB(t) + sISI(t) + sACi(t)) 

and 

K = VP(l-p) 

We can see that s(t) in the interval 0 < t < T can now be calculated by substituting 

Eqs. (11), (12), and (13) into their appropriate positions in Eq. (10). 

C.    COMPUTATION OF X = 11 [T\s(t)\2dt, THE SIGNAL COMPONENT 
Jo 

OF THE DECISION VARIABLE 

Looking at Fig. 1, we see that the filtered optical output of the Fabry-Perot 

filter s(t) is passed to a photodetector. The output current of the photodetector 

is Tl\s(t)\2 where % is the responsivity of the photodetector (A/W). Thus, we can 

see that the deterministic signal component of the decision variable at the integrator 

output is 

x = n i   W)\ 
Jo 

'dt (14) 



We have already derived sB(t), sISi(t), and sACi(t) for 0 < t < T. Directly 

substituting these three signals into Eq. (10) yields s(t) for 0 < t < T. Now our true 

task is to compute \s(t)\2 and /0
T \s(t)\2dt as H is an arbitrary constant. 

s{t) = y/P(l - p)[sB(t) + sISI(t) + SAcijt)] (15) 

K a'(t) 

Then 

\s(t)\2 = K2s'(t)s'(ty (16) 

and dropping the (t) notation for convenience in the three terms of s'(t) and noting 

that complex conjugation is a linear operator 

s'(ty = 4 + s*ISI + s*ACI (i7) 

So 

S'(t)s'{ty = (sB + 3ISI + SAci)(sB + S*ISI + S*ACI) (18) 

Multiplication yields 

s'(i)s'(ty     -     SBSB + SBS*ISI + SBS*ACI 

+SISIS*B + SiSis'lSI + SISIS*ACI 

+SACIS*B + sACis*ISI + sACIs*ACI (19) 

Rearranging and simplifying yields 



s(t)\2 = K2s'(t)s'{ty   =   K2x SBS*B + srsis*isi + SACIS\CI 

+ SBS*ISI + S
ISIS*B 

 V ' 

2Re[sBs*ISI] = 2Re[sISis*B] 

+ 
S
BS*ACI + S

ACIS*B v v ' 

2Re[s*BsAci] = 2-Re[sjBs^c./] 

+ sISls\ci + S/1CJ"S/SJ 
"> s/ 'J 

2Re[s*ISIsACI] = 2Äe[s/5/^c/]        (20) 

We will integrate each of these terms over 0 to T to compute /0  \s(t)\2dt. 

Substituting the appropriate definitions into the six terms of Eq. (20) yields 

21 terms ("clusters of summations") which are integrated from 0 to T. Also note 

that we had to create several "gating" functions to turn off integrals when the pulse 

function products in some of the 21 terms fail to overlap for certain summation 

indices. Although intuitively obvious, see Appendix A [below Eqs. (104) and (112)] 

for definitions of the max and min functions which appear in some of the forthcoming 

equations. 

Recall that K = y/P (1 - p) and K2 = P(l - pf. Then we have 

[T \s(t)\2dt = K2 [T s'(t)s'(tydt = K2 [T \s'(t)\2dt (21) 
Jo Jo Jo 

which has the following terms [see Eq. (20)] 

*'jfW* = P(l -,)'*,£ £ /+™ (T- (=^p})) (22) 



w here 

A ISI 

K2 I   \sISi\2dt = AISI + BIsr + CISI 
Jo 

-i        (-»'g)-i -1 (-r?)-i 

m - p)2 E     E     E     E    <*> 
i=-£o ff=-(l+t)<j+l r=-L0 m=-(l+r)g+l 

(23) 

in which 

^o = P3+mboA, 
(mm(g + (1 +i)q,m + (1 + r)qY 

ß 

-1 (-t'g)-l -1      -(r-l)g-l 

BISI = 2P(l-p)2   E E E        E     ^"fiöArGi^.i.m.r) 
i=-Lo g=-(l+i)q+l r=-Lo     m=-rg 

in which 

;[(# + (1 + 0?) _ (m + r<?)L for m + rQ < 9 + (1 + i)q 
Gi(g,i,m,r) = < 

and 

ßl 

0, otherwise 

-1      -(t-l)g-l      -1      -(r-l)g-l 

C/5/ = i'(w)2_E    E    E    E   p9+mboMr 
i= — Lo      g— — i<l      T = — LQ     m = — rq 

T- 
fm&x(g + iq,m + rg) 

0 

where 

/•T 

A'2 /    \sAci\2dt = AACi + BACi + CAci + DAci + EACi + FAci (24) 

+M/2      q-l       +M/2       g-1 

A^/ = P(I-/»)2   E   E   E   E/+mx^i 
fc=-M/2   9=°   „=-Jlf/2   m=° 

fc#0 n#0 

in which 

Vi = < 

hk,oK,Q- 
1 

x 
;'(wfc -CJ„) 

ej'[(wfc-u;n)r-wfc(fl/^)+ü;n(m//3)] _ eJ[(wjc-wn)(l//?)max(5,m)-wfc(s//3)+w„(m//3)] 

I      l&k,ol2 

T - - max(sr, m) 

for k ^ n 

for k = n 

10 



+M/2 -l (-tq)-l +M/2 -1 (-rg)-l 

BACI = p{i-Pf   E    E    E      E    E     E    p9+mx^ 
k=-M/2   t=-La=-(l+f)q+l   n=_M/2   r=-Lm=-(l+r),+l 

yt^O n^O 

in which 

<^2 

M;.r 
-uk(g/ß)+un{m/ß)] 

j(uk -0Jn) H' ,j[(uk-u/n)(l/ß)imn(g+(l+e)q,m+(l+ rk)} _ A 

for k ^ n 

bktbt, I eMUk/0Hm-g)] J
k,i"k -min(flr + (l + ^)g,m + (l + r)g) 

for k — n 

+M/2 -1    -(e-l)q-l      +M/2 -1    -(r-l)g-l 

^a/ = Jp(i-^)2   E    E   E      E    E    E   /+mx^3 
*=-Af/2   fc"L     '=-<»        n=-W/2   r="L    m=-'"9 

fc^O n^O 

in which 

V?3 

&*,*6n,r 
1 

j(uk -Un) 

J[{ü)k-wn)T-wk(glß)+wn(m/ß)] 

_pj[(uk-Un)(l/ß)™-a.x(g+eq,m + rq)-uk(g/ß)+ujrl(m/ß)] 

bu „hl   e^
klß^m~9^ uK,tIJk,r^ T - — max(# + Iq, m + rq) 

for k ^ n 

,   for k = n 

11 



+ M/2       q-1       + M/2 -1     _(r_l)9_l 

DACI = P{I-P?   E   E   E    E    E   ^4 
k=-M/2   g=°   n=-M/2   r=~L    m=~rq 

fc^O n^O 

in which 

P9+mKoK,r 
j{U>k -Un\ 

J[(uik-ujn )T-u>k (g/ß)+ujn (m/ß)\ 

.ei[(uk-Un)(T-/ß)max(g,m+rq)-uik(g/ß)+un(m/ß)] 

^P °kfl°n,r 

ifA =   < 
-](Uk -Un 

-j[(uk-UJn)T-üjk(g/ß)+uJn(m/ß)] 

— e-j[(uk-un)(l/ß)max(g,m+rq)-ujk(g/ß)+wn(m/ß)]] for k ^ n 

bkflbltre^l^m-^ + blflbktTe-^l^m-e) pg+m x .. 

T- -max(g,m + rq) for k = n 

12 



+M/2     9-l      +M/2        _i (-rg)-l 

EAci = p{i-p)2   E   E   E    E     E    ^ 
*=-M/2   5=°   n=-Af/2    ^-i^-U+rJ^+l 

Jt^O n^O 

in which 

^hflbl, 
1 

;(WA; -WB.) 

3j[(wfc-u<n)((m+(l+r)g)//?)-Wfc(fl//9)+u;„(m//3)] 

0j[K//J)(m-ff)] 

+     P °k,0°n,T 

^5 
[-i(wjfe-wn)] 

3-j[K-w„)((m+(l+r)g)//3)-ü;*(fl//?)+ü;n(7n//3)] 

-e-lKun/ßHm-g)] G2(g,m,r) 

bk,0b*kiTeMü"'/ßKm-gK + b*kt0bktre-Mü"</ßHm-sn] p3+m x 

for k ^ n 

{   \ß 
[(m + (l + r)q)-g]]G2(g,m,r), 

where 

G2(g,m,r) = < 
1, for g < m + (1 + r)q 

0, otherwise 

for k = n 
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+M/2 _i (-tq)-l +M/2 -1     -(r-l)g-l 

FACI = P{I-P?   E    E    E       £    £    E   ** 
Jt=-M/2    ^=-LS=-(l+09+l    n=_M/2    r=~i     '" = -'■9 

fc^O 

in which 

^+mM;,, 
1 

_ei[(wfc-wn)((m+r9)/^)-cjfc(g//3)+wn(m//0)] 

n^O 

J[(ujk-u,n){(g + (l+e)q)/ß)-uJk{g/ß)+un(m/ß)] 

P      °k,e°n,- 
1 -j[(u,k-u,n)((g + (l+e)q)/ß)-uk(g/ß)+wrl(m/ß)] 

¥6  =   < 

[-j(wjt  -Wn)] 

.e-j[K-^)((m+r?)//3)-u;fc(3//3)+ü,n(m//3)]l  j £W^ ^ ^ r\ for k =£ n 

bkllb*k,r^[{Uk/ß)lm~3)] + &£ Are_j[("*//?)(m~5) p9 + m   x   . . . 

I     \ß 
[(g + (l+£)q)-(m + rq)})G3(g,£,m,r), iox k = n 

where 

G3(g,£,m,r) = < 
1, m + rq < g + (1 + £)q ' 

0, otherwise 

K2 f   2Re[sBs*ISI}dt = K2 f   2[sBsISI]dt = 
7o Jo 

2P(1-/9)
2E   £ £        /+mMo,,G4(5,z,m) 

g=Oi=-L0 m=-(l+i)q+l 

9-1      -1      _(t-l)g-l 

+ 2P(i-P)2E £    E. ^+mVofiö..- 
g=0t'=—Lo     m= — iq 

T — — max(5r, m + z'g) (25) 

where 

G4(g,i,m) = < 0 
[(m + (l+i)g)-0], g<m + (l + i)q 

0, otherwise 
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K2 f   2Re[s*BsACi}dt = K2 [   2Re[sBsACi}dt = AB-ACI + BB-ACI + CB-ACI    (26) 
Jo Jo 

where 

in which 

V?7 

q-1       +M/2       q-1 

AB.ACi = p(i-p)2E   E   E<^ 
5=0   k=-M/2   m=° 

_     p9+rni       i       _}__ Lj'wfc(T-(m//3)) _ eJwfc((max(5,m)-m)//?) 

+^+mVo&:,oi 
-jwfc 

,-jWk(T-(m/ß)) _     -jujk((max(g,m)-m)/ß) 

in which 

g-1       +M/2 -1           (-<?)-! 

iW/= i>(i -/0a £   E E     E    <^ 
3=0    i = _M/2 <=-lm=-(l+()?+l 

jfc#0 

C^8      =      p3+mb0iQbk/- 
JUk 

Ju,k((l+e)q/ß) _ pjwk((g-m)/ß) 

-\7W* 

e-J^fc((l+^)?//9) _ e-JuM9-m)/ß) 

G5(g,£,m) 

Gs(g,£,m) 

where 

G5(g,£,m) = < 
' 1, <7<m + (l+% ' 

0, otherwise 

C, 
,-1      +M/2 -l    -(*-l),-l 

B-^/ = P(I-^)
2
E   E    E   E   ** 
3=0   *=-M/2   t=~L    m=~^ 
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in which 

^   =   P9+mb0ßb, ]ki- 
juk 

-Ln9+mh       h* -rP      °o,oöfc/7- 
1 

eJUk(T-(m/ß)) _ eJUJk((max(g,m+eq)-m)/ß) 

e-Juk(T-(m/ß)) _ e-juk((ma.x(g,m+iq)—m)/ß) 

-JUk\ 

where 

K2 f   2Re[s}SIsACI}dt   =   K2 [T 2Re[sISIsACI]dt 

=    A[si-ACI + BJSI-ACI + Cisi-ACI 

+Disi-Aci + EJSI-ACI + FISI-ACI (27) 

-1 (-I'?)-! +M/2 g-1 

AJSJ-ACI = p(i - pf E     E       E E^io 
:'=-L0S=-(l+t')?+l   k=_Mj2 

m=° 

k^O 

in which 

V10    =    / mbo,ihß- 
Jujk[(\lß){g+(\ + i)q)-m/ß\ 

JUk   L 
G6(g,i,m) 

1 +/+mM£,oH-^ e-^[(i//3)(,+(i+0?)—/0 _ !| G6(^,?,m 
-J^J 

where 

G6(g,i,m) 
1, m<y + (l + i)g 
0, otherwise 

-1 (-tg)-l +M/2 -1 (-*?)-l 

5/S/-^/ = p(i - P? E     E       E    E     E    vii 
t=-Lo a=-(l+t>+l   k=_Mj2   «=-im=-(l+<)?+l 

in which 

V11    =    P9+mbo,ibk,t 
jvk 

+P9+mbo,ib*k Mi 

0j'u;k[(l//3)min(3+(l+t-)9,m+(l+^)g)-m//3] _ „jwfc[-m//3] 

-iwfc[(l//9)min(3+(l+0g,m+(l+<)g)-m//9] _    -}uk[-m/ß] 

-JUk\ 
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-1 (-tg)-l +M/2 -1    -(*-l)g-l 

Ctsi-Aci = P(I-P? E     E       E    E   E   v» 

in which 

<^12 p9+mb0,ih,t — 
juk 

+p3+mKKi 
-Juki 

ejuk[(l/ß)(g+(l+i)q)-m/ß] _ jWkltq/0] 

e-ju,fc[(l//?)(3+(l+0g)-m//?] _ e-iuk[tqlß] G7(g,i,£,m) 

where 

G7(g,i,e,m) = < 
'  1, m + £? <# + (l+i)4 

0, otherwise 

in which 

-1    -(«'-l)g-l      +M/2 9-l 

^/5/-^/ = p(i - />)2 E    E     E E^i3 
,=-Lo     a=-w       fc=_M/2 ™=° 

k^O 

Vl3 
09+ml>     b \eJUk[T-(m/ß)] _ eJuih[(l/ß)mzx.(g+iq,m)-m/ß]~\ 

JUk 

+P9+mboA,o- 
-JVk\ 

e-juk[T-(m/ß)] _ e-jwfc[(l//3)max(g+t'?,m)-m//?] 

-1     -(t-l)g-l       +M/2 -1 M?)-l 

^75/-^/ = p{i - ?)2 E    E      E    E     E    v« 
i=-L0      g=-iq        k = -M/2   l~~L m=-[l+t)q+l 

fc#0 

in which 

Vu   = P3+mb0,ibk,e— 
JVk 

eju,k[(l/ß)(l+i)q] _ ejuk[(1/ß)(g+iq)-rn/ß] 

+p3+mbo,ib:tl 

1 

l-JUkl 
e-ju,k[{l/ß)(l+t)q] _ e-juk[{l/ß)(g+iq)-m/ß] Ga(g,i,£,m) 
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where 

G8(g,i,£,m) = 
1, g + iq < m + (l +£)q " 

0, otherwise 

-1     -(i-l)g-l      +M/2 _i    -(*-i)9-i 

FJSI-ACI = p(i - P? E    E     E    E   E   viB 

in which 

¥>is   =   P9+mb0,ib iUki- 
]Uk 

+ Z3 °0,i°fc/ 

eiwfc[r-(m//3)] _ eiwfc[(l//3)max(3+i9,m+^9)-m//9] 

3-ju;fc[r-(m//3)] _    -jo;fc[(l//?)max(3+i?,7n+€g)-m//3] 

-JUk\ 
(28) 

We have now laid down all terms of 

I    \s(t)\2dt = K2 [   s'(t)s'{t)*dt = K2 I   \s'(t)\2dt 
Jo Jo Jo 

This will be used to compute the deterministic signal detection statistic X where 

X=K I   \s(t)\2dt 
Jo 

This will be used to compute probabilities of bit error for the dense WDM system. 

D.    THE DECISION VARIABLE Y 

The decision variable Y appears at the output of the integrator (see Fig. 1). 

It consists of a signal component X, which was presented in Section C, and a noise 

component N 

Y = X + N (29) 

where 

x = n /TK*)I: Jo 
dt (30) 
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and 

N= f   n(t)dt (31) 
Jo 

We note that n(t) is a zero mean Gaussian random process with two-sided current 

spectral density N0 (A2/Hz), and A'' is a zero mean Gaussian random variable with 

variance N0T. Y is compared to a threshold Vj to determine whether a "0" or "1" 

bit is presented at the output. 

E.    PROBABILITY OF BIT ERROR FOR THE DENSE WDM 

SYSTEM 

For a detection threshold Vr and an ACI/ISI bit pattern ipp = {6^,60,1} for 

k = -M/2, • • •, +M/2, k ^ 0, £ = -L, ■ ■ ■, 0, and i = -L0, ■■■,-1; the conditional 

probability of bit error for the dense WDM system utilizing the decision variable Y 

described by Eqs. (28)-(30) is given by [2, 4] 

Q(*) = ^£°e-'i',2dv (33) 

X0 is the value of X given by Eq. (14) or (30) with the value of J0
r \s(t)\2dt obtained 

by summing Eqs. (22)-(27) when 60,o = 0- Ax is obtained in the same manner with 

60)0 = 1. The average probability of bit error Pf, is given by taking the expected value 

of Pe(ißp) given in Eq. (32) over all possible bit patterns ipp [2]. Let us define an 

ACI/ISI bit pattern set 0 = {ipp}; p = 1, ■ • ■, NPAT. NPAT is the total possible 

number of bit patterns in the set rp = {ipp}- Then 

Pb=  E {Pe^P)} (34) 
{V'p} 

If we count up the number of independent bits in i[>p, there are M(L + 1) + L0 bits. 

Using the assumption that a 0 or 1 is equally probable, we see that there are two 
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possible ways to fill each bit position. Then, by the generalized multiplication rule, if 

we let NPAT be the total number of possible bit patterns in the set ip = {*/>p} 

NPAT = (2)x(2)2 • • • (2)M(L+I)+L0 = 2M<L+1)+L° (35) 

If we assume that all bit patterns in i\> = {ipp} are equiprobable (an excellent assump- 

tion), then by the law of total probability 

Pb = 2M(L+l)+L0
jPe^1) + 2M(L+l)+LoPe^2) + ' ' ' + 2M(L+l)+Lo PMNPAT) 

and 
NPAT 

2M(L+1)+L0" 
P" = ,M(L+Ln   E   PMv) <36> 

=1 
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III. NUMERICAL RESULTS 

We attempt to generate four probability of bit error graphs.    We limit our 

expression for X given by Eq. (14) or (29) and the sum of Eqs. (22)-(27) by setting 

L0 = l        L = 0        <j>k = 0 

and 

2%kl 
"k = ~Y~ 

where k is an integer and / is the normalized channel spacing integer (/ > 0). When 

we do this, our 21 terms ("clusters of summations") reduce to ten terms ("clusters 

of summations"). In the interests of brevity, we refer the reader to Appendix B for 

the details on how we came up with the ten programmable terms of X for this case. 

Referring to Appendix B, the probability of bit error equations we use to generate 

these graphs mirror the equations presented in Chapter II, Section E. Referring to 

Appendix C, one finds the programming strategy for the ten terms and the final 

graphs, the actual programs for each of the ten terms, and the final four graphing 

programs which produce one graph each. Each of the four graphs plot probability of 

bit error versus signal-to-noise ratio Z = Tl PJT/N0 in dB. Each graph has five traces. 

One trace shows either Single Channel (SC) operation without Fabry-Perot (FP) 

filtering or SC operation with FP filtering and without ISI and ACI for comparison 

with the other four dense WDM traces. The other four traces show probability of 

bit error versus Z (dB) for four selected values of the normalized channel spacing 

integer /, or equivalently the number of adjacent channels M. See Appendix C for 

the relationship between I and M. Each of the four graphs is plotted for a different 

value ßT, the free-spectral range-bit period product.   We also note that the four 
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graphs are generated with 

p = Single Cavity Fabry — Perot Filter Power Reflectivity = 0.99 

We now present the values of ßT the four values of M, and the corresponding 

values of / used for each of the four graphs. Each separate value of M, or equivalently 

/, produces one of the four dense WDM traces for use in comparison with the fifth 

trace showing single channel operation. 

For Fig. 2:    ßT = 500 and 

M = 

For Fig. 3:    ßT = 1000 and 

M = 

For Fig. 4:    ßT = 1500 and 

M = 

For Fig. 5:    ßT = 2000 and 

M = 

124    ,98,     60      24 
1=4        1=5        1=8        1=20 

198     164    110     48 
L 1=5        1=6        1=9       1=20. 

212     164     124      74 
. 1=7        1=9       1=12       1=20. 

248     220     164      98 
L 1=8        1=9       1=12       1=20 

Looking at Figs. 2-5, we see that only Fig. 2 (ßT — 500) is a complete graph. 

For ßT — 500 we were able to compute all ten terms of X (see Appendix B) for all 

four given values of M, or equivalently /, and completely compute and simulate all ISI 

and AC I effects of our complete model given the constraints given at the beginning of 

this chapter (L0 = 1, L = 0, <j>k = 0, ujk = 2irkI/T). For Figs. 3-5 (ßT = 1000, 1500, 

and 2000, respectively), we were unable to arrive at a solution for Eq. (24) (see Term 

#5 in Appendix B), which is the very important K2 J0
T |s4C/|2^ term. It is very com- 

putationally intensive as it involves computing a quadruple summation multiple times 
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10 11 12 13 14 
Z(dB) 

15 16 17 

Figure 2:    Probability of bit error vs. Z (db) for ßT = 500. 
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11 12, 13 14 
Z(dB) 

15 16 17 

Figure 3:    Probability of bit error vs.  Z (db) for ßT = 1000.  Only / = 20 trace 

accurate (within 1/16 dB). 
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11 12 13 14 
Z(dB) 

15 16 17 

Figure 4:    Probability of bit error vs Z (db) for ßT = 1500.   Only I = 20 trace 

accurate (within 1/16 dB). 
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11 12' 13 14 
Z(dB) 

15 16 17 

Figure 5:    Probability of bit error vs.   Z (dB) for ßT = 2000.  Only I = 20 trace 

accurate (within 1/5 dB). 
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for the various adjacent channel bit "loadings" (see Appendix B for the details), 

as well as having to repeat the same very lengthy calculations for each of the four 

given values of M, or equivalently /. However, we will still be able to draw some 

conclusions for the / = 20 traces of these graphs as the channel frequency spacing 

between adjacent channels given by 

Af=^- = ^ = IRb (37) 
Zirk      1 

where Rb is the channel data rate or channel bit rate. Note that A/ is proportional 

to /. At these larger frequency spacings, ACI effects become quite negligible. Equa- 

tion (37) explains why we call I the normalized channel spacing integer as adjacent 

channels are separated from each other at an integer multiple / of the bit rate Rb- 

Let us assume a system design of a filter free-spectral-range ß = 3800 x 109 Hz = 

3.8 GHz. Then we can say that for ßT = 500 our bit rate Rb = 7.6 Gb/sec, for 

ßT = 1000 our bit rate is Rb = 3.8 Gb/sec, for ßT = 1500 our bit rate is Rb ~ 2.5 

Gb/sec, and for ßT = 2000 our bit rate is Rb = 1.9 Gb/sec. It is noteworthy that, in 

the time domain model, calculating probability of bit error as presented in Chapter 

II and Appendix A is easiest for the highest channel data rate Rb, or equivalently the 

smallest bit period T. 

We define power penalty as the increase in signal-to-noise ratio required for the 

dense WDM system to achieve a 10-15 bit error probability over the Single Channel 

(SC) system which achieves this goal operating at Z = 12 dB. We can now make 

some power penalty statements. 

Looking at Fig. 2 (ßT = 500) we see that the power penalty increases as I 

decreases, or equivalently the number of adjacent channels M increases. Looking at 

Eq. (37), we see that as / decreases, the interchannel frequency spacing A/ decreases. 

Thus, it is logical that ACI effects would increase. In short, the channels become much 
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more tightly "packed". Looking at the results for Term #5 in Appendix C when 

ßT = 500 we see that the magnitude of the contribution for / = 20 is only about two 

to four percent of the contribution for / = 4. Returning to Fig. 2 (ßT = 500), we 

see that the power penalty for / = 20 and M - 24 is approximately 2 1/8 dB; for 

1 — 8 and M = 60, the penalty is approximately 2 3/8 dB; for / = 5 and M = 98, the 

penalty is approximately 2 7/8 dB; and finally for I = 4 and M = 124 the penalty is 

approximately 3 1/2 dB. It is in this case of / = 4 and M — 124 that we see the true 

beauty of dense WDM. If we assume ß = 3.8 G Hz, then the channel bit rate Rb is 

7.6 Gb/sec, and the aggregate system bit rate Rb is 124 x 7.6 Gb/s = 942 Gb/sec, 

which is quite close to 1 Tb/sec (1 Tb/sec = 1012 b/sec). Thus, for slightly more than 

doubling the signal-to-noise ratio Z = TZP^T/N0, we have increased the aggregate 

bit rate of one single fiber close to a terabit per second. Also, the dense WDM 

system utilizes a noncoherent receiver and, thus, is much cheaper to implement than a 

coherent optical FDMA network with expensive synchronization circuitry. Looking at 

Z, however, we see that increasing signal-to-noise ratio is not that easy to do. Upper 

limits have already been approached in making low-noise current amplifiers; thus, the 

true technical problem to be solved in the dense WDM system utilizing single-cavity 

Fabry-Perot filters is to place an optical amplifier before the FP filter (see Fig. 1) 

to boost the received optical power P. With this problem solved, economical dense 

WDM systems utilizing single-cavity FP filters with aggregate bit rates with many 

terabits per second are possible. 

Now, in Figs. 3-5 we have already seen that at / = 20, the effects of ACI 

become quite negligible as the channels are spaced farther apart in frequency. Thus, 

we can conclude that the / = 20 probability of bit error traces are accurate for 

ßT = 1000, 1500, and 2000. The rest of the traces for / < 20 are not. A manuscript in 

preparation by Tri T. Ha entitled, "A Discrete Time Approach to Sensitivity Analysis 
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of Direct Detection Optical FDMA Networks with 00K Modulation," considers the 

same problem as this thesis, but uses a discrete time approach. The probability of 

bit error graphs in this future paper are generated with the same parameters used for 

this thesis. For the discrete time approach, the N = ßT = 1000 and 1500 traces for 

/ = 20 match the / = 20 traces for this thesis to within less than 1/16 of a dB, and 

the N = ßT - 2000 trace for I = 20 matches the one in this thesis to within 1/5 of 

a dB. 

Finally, using the case ßT — 500 we feel that our time domain model is very 

accurate as Fig. 2 agrees with the corresponding discrete time graph for N — 500 to 

within 1/4 of a dB for / = 4 and M = 124, agrees to within 1/8 of a dB for I = 5 

and M = 98, and matches almost exactly for J = 8 and M = 60, and I = 20 and 

M = 24. These differences are well within the realistic bounds of numerical error as 

our time domain approach requires many billions of calculations. 
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IV. CONCLUSION 

We have presented a complete model and equation for the probability of bit 

error of an 00K, dense WDM system employing single-cavity Fabry-Perot filters 

as channel demultiplexers. Our expression completely models Inter-Symbol Interfer- 

ence (ISI), Adjacent Channel Interference (ACI), and phase offset between Channel 

0 and Channel k for all M of the adjacent channels. No simplifying mathematical 

assumptions have been made to arrive at the final answer contained in Eq. (14), Eq. 

(29), and the sum of Eqs. (22)-(27). Others [1, 3] have worked on this problem; 

however, the solution is arrived at in the frequency domain and often involves sim- 

plifying mathematical assumptions [1, Eqs. (15), (36), (39) and 3, Eq. (5)]. The 

closed form expression we have presented for probability of bit error for the dense 

WDM system, although mathematically rigorous and an extremely complete model, 

has one significant drawback—it is extremely computationally intensive. The single 

complete graph for probability of bit error when ßT = 500 took three months to 

compute using multiple SPARC 10 workstations working 24 hours per day. Even for 

our limited case of L0 = 1, L = 0, ook = 2ivkI/T, and (f)k = 0, we never arrived at 

solutions for the other three values of ßT = 1000, 1500, and 2000. The solution is to 

use a discrete time approach. Again, we are confident of the accuracy of our model 

as the same problem was attacked independently via discrete time approach, and our 

graph for ßT — 500 matched the discrete case of N = ßT — 500 to within the bounds 

of numerical error. Finally, we again mention that to practically implement dense 

WDM systems with aggregate bit rates of many terabits per second, large increases 

(doubling, tripling, ...) in the SNR of the dense WDM system over that required for a 
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single channel system are necessary. To accomplish this an optical amplifier will have 

to be placed in front of the Fabry-Perot filter to greatly increase the filter's received 

optical power. 
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APPENDIX A 

DERIVATION OF /0
T \s(t)\2dt FOR USE INX = ^/0

r| s(t)\2dt 

Before we begin the derivation of /0
T \s(t)\2dt, we must first define the variables, 

equations, and terms involved: 

Y — The decision variable appearing at the output of the integrator (see Fig.   1) 

according to 

Y = X + N 

X — The deterministic signal portion of the decision variable 

X = Tl I   \s(t)\2dt 
Jo 

K\s(t)\2 - Output current of the photodetector 

n — Responsivity of the photodetector (A/W) 

n(t)- Postdetection thermal noise with two-sided current spectral density JV( ) (A2/Hz) 

N — Random signal component of the decision variable Y. N is a zero-mean, Gaus- 

sian random variable with variance N0T 

N= [   n(t)dt 
Jo 

P — - Power reflectivity of the single-cavity Fabry-Perot filter 

ß- - Free spectral range of the single-cavity Fabry-Perot filter (Hz) 

T — - Data bit period (s) 

P- - Received optical power (W) 
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«■W - { J: Ütherwise } <38' 

Desired Channel/Channel of Interest — Channel 0 

Adjacent Channel — Channel k, k = — M/2, •••,—]., 1, • • •, -\-M/2 where M is an 

even integer 

60,0 — The detected bit of interest in the interval 0 < t < T 

bQii — Bit in Channel 0 during the ith time interval [zT, (i + l)T] where 

6o,,-G{0,l} 

bk/ — Bit in Channel k during the Ith time interval [£T, (I + 1)T] where 

and 

(f>k — Phase offset between Channel 0 and Channel k. <f>k is assumed to be a uniformly 

distributed random variable between [0,27r] 

<f>k~U[0,2v] 

uik — Radian frequency spacing between Channel 0 and Channel k.   Channels are 

symmetric around Channel 0, i.e., 

UJk = ~u_k 

h[t) — Impulse response of the Channel 0 single cavity Fabry-Perot filter 

MO = (w) £y* (* -1) (39) 
3=0 
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S(t) — The Dirac Delta Function defined in two parts 

and 

1°  6(t)dt = 1 (40b) 
Jo- 

b0(t) — Complex baseband equivalent data signal in Channel 0 

Ht)=   E   b0,iPT(t-iT) (41) 
i=—LQ 

lQ — An integer greater than zero representing the number of bits in Channel 0 that 

are trailing the detected bit 60,o- 

h(t) — Complex baseband equivalent data signal in Channel k 

h(t)=  £ hje^prit - £T) (42) 
e=-L 

L — An integer greater than zero representing the number of bits in Channel k which 

trail the 0th bit in Channel k, bk,o- 

r(t) — Received complex baseband signal at input of the Channel 0 Fabry-Perot filter 

+M/2 

r(t) = y/Pbo{t)+      £      y/Pbk(t) (43) 
fc=-Af/2 

We now begin the derivation of |0
T |s(i)|2c?i which allows the computation of 

X = K [   \s{t)\2dt 
Jo 

where s(t) is the output of the Fabry-Perot filter with an impulse response of h(t) 
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MO = (W)f>*(*-|) 
As stated before 

+M/2 

r{t) = VPb0{t)+    J2    VPh{t) 
k=-M/2 

Substituting Eqs. (41) and (42) yields 

+M/2 o /    0 +M/2 o \ 

r(t) = VF    £   b0,iPT(t-iT)+      £       Eb^JÜJktPT(t-iT)\        (44) 
\>'=-£o ,       .,,„   l=-L ) k=-M/2 

k^Q 

We are interested in the detected bit 60j0 during the detection interval 0 < t < T, so 

we need only evaluate s(t) = r0(t) in the interval 0 < t < T 

/OO fOO 

h(t - T)r(r)dT = r(t - T)h(r)dT (45) 
-OO J — OO 

s(t) = r-o(t)    =   r{t) * h(t) 

=    h(t)*r(t) 

/ +M/2 \ 

=  h(t)*lVPbo{t) + Vp    £    6*(')J (46) 

fc=-M/2 

As convolution is a linear operator and distributes over addition 

/ +M/2 \ 

s(t) = r0{t) = WP(h(t) * b0(t)) + y/P      Yl      M*) * h(t) 
k=-M/2 ' 

k^O 

s(t) = r0(t) = VP\h(t) * b0(t) +      £      Ä(<) * &*(*)] 

(47) 

(48) 

k=-M/2 

k^O 
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Now looking at the term within the parentheses 

+M/2 o 

h{t)*bo(t)  +      E      h(t)*bk{t) = h(t)*   E   b0,iPT(t-iT) 
k=-M/2 l=~L° 

+M/2 o 

+     E     M*)* E h^prit-lT) (49) 
k=-M/2 i=~L 

k^O 

Applying the distributive property of convolution 

+M/2 o 

h(t)*bo(t)+      E      h(t)*bk{t)=   E  M*)*(V^T('-*r)) 
fc=-M/2 ,'=_Lo 

+M/2 o +iW/2 o / > 

+   E    EÄW* MJ'wttM<-^) 
,,,„   t=-L \ t 

(50) 
k=-M/2 

Expressing convolution in terms of its integral definition 

+M/2 o oo 
h(t)*bo(t)+      E     h(t)*h(t)=   J2   /     M^-^t^Pr^-iT)]^ 

k=-M/2 l—L° , , 

+      E       E   /     Ä(t-r)  6Me^Tpr(r-/r)  dr (51) 

k=-M/2   l—L 

fc#0 

(52) 

5i 

Substituting the expression for /i(t — r) [Eq. (39)] into term A\, above 

Ai=   E   r^-p)E^s(i-r-^)bo^PT(r-iT)dT 
i=-L0

J-°° g=0 V P/ 

Factoring (1 — /») and interchanging the order of integration and summation yields 

Ai = {l-p)  E   E />" V< r * f* - r - £) pT(^ - iT)rfr (53) 
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r 

Using the identity: /_ ~ x(i)8(t — t0)dt = x(t0), the integral evaluates to 

pT(t — giß — iT). We then have the following for A\ 

0 /-oo 

^1    =     E   /     A(^ - r) [60,«PT(r - ?Tpr 
t=—Lo 

0 oo / 

= (W) £ E^..-PT * 
i=-Lo a 

Recalling the expression for 
+M/2 o 

0 
iT 

/oo 

 .       -oo 
k=-M/2 

kjtO 

e=~L- 
bk/e^

T
PT{r-£T) dr 

(54) 

(55) 

Substituting the expression for h{t — r) given by Eq.   (39) into Eq.   (55) above, we 

obtain 
+M/2 o 

Br 
~M/        °     r°° ( a\ r i 
E       E   /     (1 - />) E P9H * - r - |     6Me,wtTPr(r - *T)  dr     (56) 

,,,„    i=-LJ-°° 3=0 \ P / k=-M/2 

Factoring 1 — p, interchanging the order of integration and summation, and factoring 

bktt and p9 from the integral 

+M/2 o +M/2 0       oo oo        / 

5i = (i-^)   E   E xy6*w * < 
,.,„   fc-L5=0 •y-°°      V k=-M/2 

fc#0 

r - I   e^TpT(r - £T) dr      (57) 

Applying the property f*™ x(t)8(t — t0)dt = x(t0) 

r 8 it - T - | J eJ"kT
PT{T - £T)dr = e'^-WMpj. (t - | - £TJ (58) 

Substituting Eq. (58) into Eq. (57) yields 

+M/2       o 5i =     E    E /   M*-T) V/^'PTCT-^) 
«_     r J—OO 

fc=-M/2 fc-L- 

dr 

+M/2 0       oo / \ 

(W)   E    E E ^M^(i-(s//3)V * - £ - *r 
,,,„   £=-Lg=0 \ P J 

(59) 

k=-M/2 
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Substituting Eq.  (54) and Eq.  (59) into Eq.  (51) and then substituting this result 

into Eq. (48) yields 

s(t)    =    r0(t) = VP (i-/0 E E/V.-PT (* - f - ir 

A, 

tJukit-ü/ß)). 
+M/2 0       oo 

+ (!-/>)     E      E E />5&M^(M9/WPT It - I - IT 
k=-M/2   e—L9-° 

k^O 

(60) 

5i 

We can now factor out (1 — /») from our expression above. Then 

r    o      oo / 

s(t)    =   r0(t) = y/P(l-p)    E   H^iPT (t 
.i=-Lo 9=0 V ß 

■iT 

+M/2 0       oo                                                      /           _               N 

+      E E E Pgh,ee^{t-^ß))PT (t-Tj-tT 
k=-M/2 ^-^=°                                                 V          P 

k^O 

(61) 

Looking at Eq. (61). We separate the terms involving the detected bit of interest in 

Channel 0, 60,o, the trailing bits in Channel 0, 60,i i ^ 0, and the terms involving bits 

in the other channels, bk,t, k ^ 0 

s(t)    =   r0(t) = VP (1 - p) 
K 

J2p9b0,oPT y--ö 

-1      oo / 

+ E E^ViPT* 
i=-Lo 3=0 \ ß 

»B(«) 

-iT 

*/Sj(*) 

+M/2 o       oo +M/2 0       oo / \ 

+   E    E EpPh^-MMpT It-i-iT) 
,— M,O   *=-L9=0 \ P / k=-M/2 

k^Q 

(62) 

S/tC/(<) 
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where sB(t) is the desired signal, sISi(t) is the Intersymbol Interference (ISI) signal, 

and sACI(t) is the Adjacent Channel Interference (ACI) signal. Using this compact 

notation, we have 

s(t) = r0(t) = K (sB(t) + S/5/(0 + sACI(t)) 

Sketching sB{t) for 60,o = 1 

 y/P{l-p) 

I I f 
T       i.5r 

(63) 

We can also sketch the intersymbol interference due to the trailing pulses in Channel 

-2T -T       -0.5T(0.5T        T       1.5T 

ISI contributions to the pulse of interest 

Now let us assume in one pulse interval T that 

T 

ß 

(64) 
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where l/ß divides evenly into the period T making q an integer quantity. We are only 

interested in the detection interval 0 < t < T, so we only need to evaluate s(t) = r0(i) 

in the interval 0 < t < T. Looking at the desired signal, which is the system response 

to the bit of interest 60,o 

5fl(0 = *52p9bo,oPT [t - 
x      ß) ' 

Assuming fe0,o = 1> 5
B(0 appears as 

for 0 < t < oo (65) 

sB(t) 

P1 V. 
P2 \. 
P3\ 

0<t<T T <t 

7 \ 

111 
ß ß ß 

\    .   <i 

q-1 

+-    T + 
ß ß 

T + 

1 
ß 

T+~ß    T+    ß 

We can see that, during the interval 0 < t < T, the response is a sum of scaled, 

shifted rectangular pulses. Therefore 

9-1 
sB(t) = J2p9b0,0PT 

3=0 

vr-i !-i hvO<t<T        (66) 

/ 

We now direct out efforts towards developing an expression for sisi(t) during the 

interval 0 < t < T. We begin by examining the ISI term for i = —1 in Eq. (62), 

denoted by —1ISI. 

l/SJ = £^6o,-iPrM-| + irj, for - T < t < oo        (67) 
3=0 
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By examing the sketch of — IISI 

„o '" 

-T 

^ 

-T + 

0    I   l 
ß     ß 

■T+q-^±    -T+2q-1 

ß '   '      ß 

we see that -1/5/ will also be a sum of shifted, scaled rectangular pulses for 0 < t < 

T. The -1/5/ expression will have two parts, the first of which is 

7-1 
/ PJL it i \ 

(68) -i/s7(i)=x>viw(^y 
5=1 V       9       J 

for 0 < t < T 

But with the ql shift we no longer sum scaled pulses beginning at t = 0 and end- 

ing at l/ß,2/ß,---, but now we sum pulses which progressively scale and begin at 

l//?>2//?> • • •> and end at t - T. This second part of the expression looks much like 

the expression for sB(t) during the interval 0 < t < T [Eq. (66)]. Thus, we may write 

the second part of —IISI 

 T I,   f9-q\\ 1/5/(2) = 2£V&o,-lPr 
3=7 9-q 

, ß t 

ß 
) 

for 0 < t < T 

(69) 

Then, since -1ISI = -1 75/(1) +  -1 75/(2) for 0 < * < T we have 

-iisi=gj:P^_1PT(^i) 
9=1 IT 
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2g-l 

+   ]C P9K-lPT 
9=1 

T 

\ 

9~9 
,   ß   . 

9-9 
v       ß       . 

for 0 < * < T     (70) 

/ 

Examine the ISI term for i - -2 in Eq. (62), -275/ 

2 IS I = £ V-2/pr f« - | + 2Tj , for -2r<i<cx3 (71) 
g=o 

We sketch -2/5/ 

,o ^ 

-2T -2T + 

1 

-T 

-2T + - -2T + (9-1) 

-**\ 

-I 
-2r + (2g-l) 

0 
-2T + (3<7 - 1) 

-2/5/(1)= 2£%'6o,-2pr (^y). 

By analyzing this sketch, we can obtain 

2q~\ 

£ 
and 

/ 

-2/5/(2) = xyv-2Pr 
3=2? 

for 0 < t < T        (72) 

0-2g' 

T- 9-^9 
W        V    /? 

for 0 < t < T (73) 

Note:   These rectangular pulses shift into the interval 0 < t < T on the 2qth shift. 
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Similar to -USI:    -2 ISI = -2 /£7(1) +  -2 75/(2) for the interval 0 < t < T 

27-1 / 

2 ISI =   ]T  p3b0-2pT ( 
5=7+1 V 

ßT(ty 

3?-l 

+   J2 P9f)0,-2PT 
g=2q 

9-q 

\ 
T 

T 9-^q 

V ß > 

9-2q 

,      ß      t 
for 0 < t < T     (74) 

/ 

We now examine the -3/5/ term to ensure recognition of a pattern, if any, that will 

allow us to write an expression for sISI(t) for 0 < t < T. 

3/S7 = E^V-3Pr(<-! + 3rV for - ZT < t < oo       (75) 

From the sketch of -3/5/ 

,o /- 

Pl 

3T 
1 

-2T 
q-V -3T+-    -3T+      ß 

-T 

-3T + 
'2q-V 

0 

-3T + 
'3g-r 

, ß , 

we may write directly 

4?-l 

+ 2 P9K-3PT 
g=3q T- 

-3/5/= x;1 P^_3PT(mo\ 
g=2a+i \9 - 2ql 

g-3g 

, ß t 9-M 

>    ß    > 

for 0 < t < T     (76) 

Then from Eqs. (70), (74), (76), the expressions for the -1/5/, -2/5/, and -3/5/ 

pulses, we are ready to use the pattern developed to write an expression for the ISI 
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between 0 < t < T. Recalling 

sisi(t)=   E   f> Vd* (* - £ - «TV 
i=-L0g=O \ P I 

we may write directly from the pattern developed 

for - L0T <t<oo        (77) 

W0= E 
i=-L0 

(-w)-i 

E P3KiPT I        .   /,    .    -x 
/?r(0 

/ 

+     E     pgbo,iPT 
r 

V ,  ß  . 

9 +ig 

, ß , 

\ 

I 

for 0 < t < T (78) 

We now have expressions for sjg(£) and srsi(t), during the interval 0 < t < T.  We 

have only the ACI term Sj\ci(t) to calculate 

+M/2 0       oo / \ 

WO =      E       E E P9h<le
j^t-^^pT (t - 

g- - IT]     for - LT < t < oo 
,,,„   t=-Lg=0 \ P I k=-M/2 r~"9 

(79) 

* Note:    This portion of 5,40/(0 *s almost exactly like the ISI term with which we 

just worked [see Eq. (62)]. The only difference is the complex exponential factor. 

Looking at the 0th term of the ACI in the A;th channel 

5=0 ' V PI 

we sketch OACI 

p\t)wk(t-(llß))   ^ 

pieiuk(t-Wß))   ' 

for 0 < t < oo (80) 

I     1 
ß     ~ß 

T 

q-V T + 1 
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We see, that in a manner similar to the Sß(t) signal, the pulses add as before, but 

now the amplitude of the pulses is modulated by p3eJ^k(t-{g/ß)) versus just p3 before. 

Then 

/ \ 

g\ 
9-1 

OACI ^Y,P9hkfie3UJk(t~islß))PT 
s=0 

T 
t- 

T ßt 
for 0 < t < T      (81) 

/ VV"    ß, 
The —IACI will be similar to the —1/57 term [see Eq. (70)]. However, now we not 

only have p9 but also the complex exponential gated by the pulses in the summation. 

-1 ACI =Y,P9K-ie^t-^lß))PT (^ä\ 
7-1 

3=1 

2£Vvi^(Ms//3)w 
3=1 

T 
t- 

\ 
T g-q 

,  ß  t 

g-q 

v       ß       . 
I 

for 0 < t < T 

(82) 

The derivation of —2ACI and — 3ACI will proceed in a similar manner as —2ISI 

and —3ISI [Eqs. (74) and (76)]. We see that two different type pulses gate the 

product of p9 and a complex exponential term. These gated terms are then summed 

over the period 0 to T. We then use our expressions for OACI, —IACI, ... to write 

an expression for sAci(t) during the interval 0 < t < T in a manner similar to the 

srsi(t) expression. We may now write the final expression for the ACI 

/ 

SACl(t) 

+M/2 

£ 
k=-M/2 

yfc^O 

/ 

■g=o 

-1 

V 

(-M-i 

\ 

T ri 
ßJ 

if      p9bk<ie^^9l^pT f—^ + £ 
-(t-l)q-l 

+      J2     P9bKie^^9'^ x • 
g=-tq 

ßT(t) 

+ ')?, 
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PT 
T 

\ 
T 9 + k 

,    ß    , 

'g + iq 

,   ß   , 
I 

for 0 < t < T (83) 

We have now derived sB(t), sISi(t), and sACi(t) during the interval 0 < t < T. We 

now develop the expressions needed to compute \s(t)\2 and |0
r \s(t)\2dt. Substituting 

the expressions for sB{t), sISi{t), and sACi{t) for the interval 0 <t <T into Eq. (63) 

yields s(t) in the interval 0 < t < T 

s(t) = y/P(l- p)[sB(t) + sISI(t) + sACi(t)], iovO<t<T (84) 
> v ^ ^ ' 

K s'(t) 

where sB(t), sISI(t), and sACI(t) are described by Eqs. (66), (78), and (83) respec- 

tively. Then 

\s(t)\2 = K2s'(t)s'(ty (85) 

Dropping the (t) notation for convenience in the three terms of s'(t) and noting that 

complex conjugation is a linear operator 

s'(ty =s% + s*ISI + s\CI (86) 

So 

s\t)s\ty = (sB + sISI + sAci)(sB + s*ISI + s\CI) 

Multiplication yields 

s'(t)s'(ty   =   sBs*B + sBs*ISI + sBs*ACI 

+SISIS*B + sISis*ISI + sisis*ACI 

+sAcis*B + sACis*ISI + sAcis*ACI 

(87) 

(88) 

Rearranging and simplifying yields 

\s(t)\2 = K2s'(t)s'(ty   =   K2x sBs*B + sISis*ISI + sAcis*ACI 

\SB? \siSI? \SACI\ 
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+ sB$}si + SISIS*B 

2Re[sBs}SI] = 2Re[sISIs*B] 

+ 
S
BS*ACI + 

S
ACIS] 

2Re[s*BsACi] = 2Re[sBs*ACI] 

+ SlSlS*ACI + SACIS*ISI 
s v '. 

2Re[s*ISIsACi] = 2Re[siSis*ACI]        (89) 

We will integrate each of these terms over 0 to T to compute |0
T \s(t)\2dt. To avoid 

confusion, we must realize that constant K2 must be carried through to the final 

calculation of all quantities. Recalling Eq. (66) 

/ \ 
T I n\ 

(90) 
9-1 

SB = Y, P9b0,0PT 
3=0 

t-% 

\ ri ß, 
i 

We know 60,» £ (0,1), P9 is real, and pr(-) is also real. Then 

sB = sB (91) 

and 
/ 

\sB\   = 
9-1 

J2p3b0,0PT 
3=0 

\ 
T- i. P. 

W ß) 1 
Factoring 60,o as it is a constant to the summation, we obtain 

I 
(92) 

Is B\    = »0,0 

/         / 
9-1 

YP
9
PT 

3=0 

V          V 

\ 

T 

rp J 

W    ~~ß, 
t-i 

)) 

(93) 
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Performing the squaring operation yields 

\
S

B\   = öo,o 

,-1  g-1 

E E P9+mVr 
g-0m=0 

\ ur-» 
h,H PT 

T - 

I       m ' 

\\    ß 
(94) 

Then 

K
2
\SB?  =  P{i-PY%fl 

q-l  q-l 

E E p3+mPT 
g=Om=0 

\{T-ß 
*K 

PT 
T 

\{T~ß 
m\  l        ß. 

I 

for 0 < t < T (95) 

Now we want to compute /0 K2\sB\2dt [see Eq. (89)] 

g-l 9-1 

/ K>\sB\2dt = p(i-P)2bloEEp3+ 

JO o=0 m=0 

X 

f Jo 
PT 

ur  , ST-S 

\ / 

PT 

I \ r    * 

m\  V      ßt 

dt 

V 
(96) 

Looking at Eq. (96), we have interchanged the order of integration and summation. 

As the pulse functions are the only functions dependent on time in the expression, 

we look at the product of the two unit amplitude pulse functions in 77 
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=>•   Product is 0 
YZ} =»  Product is 1 

We have arbitrarily assumed that m > g, but our logic would also work if we assumed 

g > m. The product of two pulses is 1 for m/ß < t < T and 0 otherwise. Thus, we 

see that the integral of the product of the two pulse functions in 77 will be a square 

area of height 1 x (T- largest of g/ß or m/ß). Thus 

max(<7,m)\\ L 1' K*\sB\*dt = P(l-P)2blo
q£ £ P°+m (T 
g=Om=0 \ ß 

for 0 < * < T 

(97) 

where max(^,m) is defined by 

max (xi,x2): Choose largest of xx or x2, which are both positive. 
If Xi = x2, then max(x1,x2) = xx = x2. 

We now need to compute J0
T K2\s[sr\2dt. We see from Eq. (78) that s/5/ is real and 

not complex since 60,i € {0,1}. Thus 

IW 

sis 1 = slsI and \sisi '/s/ 

-1     (-J,)-l 

E        E      ^V.Pr I        , #T(0 

-1     -(t-l)?-l 

+ E    E   P'V.-PT 
«'=-1,0      g=-iq T- g + iq 

,   ß   , 

9 +ig 

k   0   , 

(98) 

(99) 
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To perform the squaring we set up another version of a + b with the g-index changed 

to m and the z-index changed to r to account for cross-product terms. We call this 

new representation c + d. Thus 

|5/s/|2 = (a + b)(c + d) = ac + ad + be +J>d 
A B C V 

Performing the multiplications yields 

-1 (-iq)-l -1 (-rq)-l 

A = ac  =    £       E       E       E      rMo,x- 
i=-L0 3=-(1+J)<?+1 r=-L0 m=-(l+r)q+l 

PT 
ßT(t) 

PT 
ßT(t) 

g + (l+i)qj       \m + {l + r)q/ 

(100) 

B = ad 
-1 (-tg)-l -1     -(r-l)g-l 

E     E     E    E   ^+mMo, 
i=-Lo g=-(l+i)q + l T—-LO     m=-rq 

X 

(     ßT(t)     \ 
\g + {l + i)qj 

tT L_ (rn + rq\\\ 

ß 

\ 
T- 

m + rq 

i 

C = bc   = 
-1     -(t-l)g-l      -1 (-rg)-l 

E    E    E     E    p3+mKbo,r*-- 
i=—Lo      g=-—iq     r=—LQ m= —(l+7-)g+l 

'TL-II + ^W 

PT 
ß 

\ 
T- 9 + k\\ 

,    ß J 

PT 
ßT(t) 

m + (1 + r)q/ 

V=bd   = 
-1     -(i-l)q-l     -1     -(r-l)g-l 

E    E    E    E   p^boM 
i=—Lo     g——iq     r=—LQ     m=—rq 

X 

/ 
T [t- 

PT 
'g + iq\ 

,   ß   ))) 

( 
T\t- 

PT 

(m-\-rqV\\ 

{     ß     )) 
' m + rq\\ 

,     ß     )) 

(101) 

(102) 

(103) 

51 



Integrating over the interval of interest: /0
T K2\sISI\

2dt = ■ • • 

K2 JQ   \sISI\
2dt = K2  jf   Adt + J  BdtJ  Cdt + j  Vdt (104) 

The equations for A, B, C, and V are Eqs. (100)-(103), respectively. We now analyze 

term A [Eq. (100)] by sketching the multiplication of the pulses 

ßT(t)      \ 
m + (1 + r)q 

Product is 0 
Product is 1 

PT 
( 

9 + (l+i)q     m + (\+r)q 

ß ß 

ßT(t)      \ 
^ + (1+0?, 

Again, we have arbitrarily assumed one pulse lasts longer than the other. Since the 

height of each scaled pulse is 1, we see that the area under the product is 1 times the 

minimum of 

q + (l+i)q                    m + (l + r)o 
—,—         or         i >_L 

ß ß 

We can apply the same logic as used before to arrive at the value of the term 

K2 lTAdt I 
Then 

rT -1 (-W)-I -1 (-rq)-l 

K>[  Adt = P(l-P)2  J2        E        E E       Vo (105) 
«=-L0 5=-(l+,)(j+l r=-L0 m=-(l+r)q+l 

i: 
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where 

where 

<p0 = p9+mb0jb0,r 
'min(ff + (1 + i)q,rn + (1 + r)q)y 

ß 

min (g + (1 + i)q, m + (1 + r)q)     is defined by 

min(xi,x2)
: Choose smallest of xi or x2, which are both positive. 

If Xi = x2, then min (xi,x2) = X\ = x2- 

We now compute K2 /0 Vdt. Looking at the expression for V [Eq. (103)], we sketch 

the product of the pulses, arbitrarily assuming m + rq > g + iq 

Product is 0 
Product is 1 

g + iq    m + rq 

ß ß 

We see the product of pulses only exists from the maximum of 

o + iq m + rq 
or 

ß ß 

Thus, the integral of the product of the pulses will be 

max (g + iq, m + rq) 

Then 

ß 

-1     -(t-l)q-l      -1      -(r-l)g-l 

K2J  Vdt   =   P{\-Pf £      £      £      £    /+m&0Ar 
i=—Lo     9=—iq     r=—Lo     m——Tq 

,     (ma,x(g + iq, m + rq) 

x 

(106) 
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Looking at the expression for B [Eq. (101)] 

-1 (-*"g)-l -1      -(r-l)g-l 

B =   E     E     E    E   ^+m6o,.-Vr x 
i=-L0 g = -(l + i)q + l T = -LQ     m = -rq 

PT 
ßT(t) 

fT(t_(™ + r«\\\ 

^ + (1 + 09, 
PT 

0 

\ 
r- m -\- rq 

7T~. 
(107) 

/ 

We note that m, g, i, and r are simply dummy variables and may be interchanged, 

giving 

B 
-1 (-rq)-l -1      -(i-l)q-l 

E     E     E    E   ^+m6ö.A.-x ■ ■ 
r= — Lo m=—(l+r)(j+l i—-Lo      g=—iq 

PT 
ßT(t) 

(T(t_(9 + iq\\\ 

m + (1 + r)g PT 
/? 

V 
r 

,   ß   , 

(108) 

/ 

If we look at the expression above Eq. (108), we see that B is identical to C [Eq. 

(102)] in every way except the order in which the summations appear. The order of 

the summations can be rearranged because the terms inside of the summations are 

completely separable in relation to the sets {m,r}, {i,g}. Thus, we can rearrange 

the order of the summations and conclude 

B = C (109) 

and that 
rji rji r"r* rrt 

K2 f  Bdt + K2 f  Cdt = 2K2 f  Bdt = 2K2 f  Cdt 
Jo Jo Jo Jo 

(110) 

We choose to integrate twice the value of B [Eq.  (101)].  Interchanging the order of 

integration and summation yields 

rT (    -1 (-«'g)-l -1     -(r-l)g-l 
Bdt   =   2K2[ 

i=-L0 g=-(l+i)q+l T=-LQ     m=—rq 
2K 

-T (    -1 (-«<?)-! -1     -(r-l)g-l 

l Bdt = 2W£     E     E    E   rt.Vx'- 
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fT     (     ßT 
I PT[j+Ti 

flT{t) 
''r(t- (m + rq}}\ 

+ 0?, 
PT 

ß 

\ 

m + rq \\ 
~ß~       J 

dt)     (111) 

Sketching the product of the two pulses, we see the product will exist for m + rq < 

g + (1 + i)q and will be zero otherwise. 

Product is 0 
Product is 1 

m + rq     g + (1 + i)q 

ß ß 

We create a "gating" function to account for this 

i PT U+d+o«JPT 
/r'-(=T1))' 

T- 
m + rq 

dt 

ß  y; / 

i   ß[{9 + (1 + i)q) - {m + rq)], for m + rq < g + (1 + i)q 

0, otherwise 
(112) 

Then finally 

rT 
2K2 I  Bdt   =   K2 (  Bdt + K2 I  Cdt 

Jo Jo Jo 

-1 (-iq)-l -1      -(r-l)7-l 

=   2P(l-p)2  E E E        E     P3+mboMG.{g,i,m,r) 
«=-Lo g=-(l+i)q+l r=-Lo     m=-rq 

(113) 
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Finally, combining the results of Eqs. (105), (106), and (113) we have 

r-p i-f-i rrr rp rrt r-p 

K2 [   sISis*ISIdt = K2 f   \sISI\
2dt = K2   f   Adt+ f  Bdtl  Cdt + f  Vdt 

Jo Jo Jo Jo Jo Jo 
(114) 

where 
T -1 (-t'g)-l -1 (-rq)-l 

W Adt = p(i-P)2 E     E     E     E    ^ 
0 i--L0 s=-(l+j')<j+l r=-Lo m=-(l+r)q+l 

in which 

mm(g + (1 + i)q,m + (1 + r)q)\ 
¥o = p9+mbo,ib0,r 

ß 

K2 f  Bdt + K2 [J Cdt = 2K2 [T B dt 
Jo Jo Jo 

-1 (-W)-I -1      -(r-l)9-l 

= 2P(l-P)2 E       E       E      E    ^'"bo.ibo.rGiig, 
i=-L0 g=-(l+i)q+lr=-L0     m=-rq 

I, m, r) 

and 

-1     -(,-1)9-1      _x      _(r_i),_i 

K2 f vdt = p(i-P)2 E    E    E    E   p9+mKMr 
Jo -JTr.   „rr.-„   ,-r.  „,rr,„ 

T- 

x 
t'=—Lo       g = — iq      r — — Lo      m = — Tq 

/max(# + ig, m + rg) 

V ß , 

Now we must compute Is^evl2 and K2 fo \sACi\2dt. We see that we have a complex 

h,t as 6fci/ G {0,eJ'*fc}, as well as a complex exponential e^-WP)) [see Eq. (83)]. 

We begin by noting that the complex conjugate operator has the following properties 

(uv)      =    U V 

(u + v)*    =    U* + V* 

Taking the complex conjugate of Eq. (83) 

3ACI 

+M/2 

£ 
k=-M/2 

( 

\ 

l 
9-1 

E Pablfle-^-^PT 
■9=0 

T 

W ßj 
ßt 
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Letting 

and 

-l 

+ E £        p°bltle-
iü">(t-Wß»pT 

.g=-(l+t)q + l 

ßT(t) 

+     E     ^e-^-k'Wpr 

T   f- 

g + (l+i)qj 

{g + k\\\ \ 

ß 

T ^h 

PT 
T 

a    =   PT 

W        P, 

T 

rf. 

t- 
ß. 

t - 
m 

ß 

C     =     PT 

C      =    PT 

PT 

'     ßT(t)     \ 

,9 + (i + t)q) 

'      ßT(t)      \ 
^m + (1 + r)q) 

T 
&)), \ 

T- 
m + rq d'    =   PT 

W       V      ß 
Then, with a change of indices, we can express s*ACI as 

+M/2        q-l 

S*ACI   =        E      E />m&;,oe-j""(i-(m//3))a' 
,,,„   m=0 n=-M/2 

n^O 

A* 

(115) 

(116) 

(117) 

(118) 

(119) 

(120) 

(121) 
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Now 

Then 

+M/2 _l (-rg)-l 

+   E    E     E    ^&;ire-^-(m^»c' 

B* 
+M/2 _i     ~(T—1)?-1 

+      E       E       E     p^e-^-WMd' (122) 

c* 

+Af/2       q-1 

SACi   = E      E^6*.oeJ'w*(t-('//?))a 
k=-M/2   5=° 

A 

+M/2 -1 (-eq)-l 

+   E    E     E    ^6W^
('-Wfl)c 

B 
+M/2 _i    -(*-l)9-l 

+      E       E       E     /^/e^(i-(^))d (123) 
*=-M/2   l=~L     9=-(q 

- v  
c 

|^a/|2 = ^c/^c/ = (A + B + C) (A* + B* + C*) (124) 

Now, distribution of multiplication over addition yields 

\SACI\
2
   =   AA* + AB* + AC* + BA* + BB* + BC* 

+CA* + CB* + CC* (125) 
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Rearranging yields 

■SAC/I AA* + BB* + CC* + 2 

"I 

1 
(AB* + BA*) 

+2 
L2 

(AC* + CA*) + 2 ^(BC* + CB*) 

Using the identity Re[Z] = (Z + Z*)/2 we have 

\SACI\
2
   =   AA* + BB* + CC* + 2i?e[AC*] 

+2i?e [AB*] + 2i?e[BC*] 

Multiplying the terms above yields 
+ M/2       q-l       + M/2        q-l 

AA* =      E      E      E       E /+m^,o6;]0e
jt("fc-ü;")i-^(9//?)+u"l(m//3)]aa' 

fc=-Af/2   3=°   n=-M/2   m=° 

where 

/c#0 n^O 

BB*=   E    E    E       E    E     E    7 
*=-M/2   <=-£fl=-(l+<)«+l    n=_M/2    r=-im=-(l+r),+l 

fc^O n#0 

,-, _  n3+mh,  „h*    pJ[("k-V7i)t-uk(g/ß)+un(m/ß)]      I 
1 — P uk,iun,rc uu 

(126) 

(127) 

;i28) 

(129) 

where 

cc* = 
+M/2 _i    -(e-l)q-l      +M/2 -l    -(r-l)g-l 

E    E   E      E    E    E   c 
= -L    g=-£c 

k=-M/2 n=-M/2 

n#0 

r=—L     m=—rq 

(130) 

/■ _ p9+mbkib*   ei\^
üi=-^n)t-wk{alß)Jr^n{-m.lß)\^i 

To compute 2i?e [AC*], we know i?e[-] is a linear operator so it may be moved across 

the summations. After multiplication of terms A and C* we get 
+M/2       q-l       +M/2 -1     -(r-l)?-l 

2i?e[Ac*] = 2   E   E   E    E    E   * 
S=°       _    tr/n    T= — L     m = — rq 

(131) 

k--M/2 

k^O 

n=-M/2 
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where 

K = Re U^bkpblre^-^-^91^^™!^^ 

We know bk<0, b*nT, and ei[{"i>-"n)t-uk{glß)+wn{miß)] are compiex. We will calculate K in 

Eq. (131) using the identity 

Re[Z] = I(Z + Z") 

Since (uu)* — u*i>*, by extension it can be shown that 

{uvw)* — u*v*w* 

Also note that if 5 = ax + a2 + a3 + a4 -\ where a1: a2, a3, a4, • • • are complex, then 

i?e[S] = Re[ai] + Re[a2] + i?e[a3] + Re[a4] + 

We will also use the fact that if z is complex and a is constant, then 

i?e[az] = ai?e[z] 

Using the facts above, we can see 

1 

% 

bu nb*    e^
UJk-^n)t-üjk(g/ß)+ujn(m/ß)] 

'S»"    71, T 

+^,o^,re^[K_u;n)f~w':(s//3)+a'n(77l//3)]l /93+mad' (132) 

Then 

K   = /), „/)*    pi[(uk-"n)t-ujk(g/ß)+ujn(m/ß)] 

+^,o&n,r
e"J[K_Wn)4_a":(5//3)+t"n(rn//3)]] /+mad' 

with a and d' defined by Eqs. (116) and (121), respectively. 

(133) 
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Now, we will turn to computing 2Re [AB*]. This will have five summations just like 

the 2Re [AC*] term above. 

+M/2      (j-1      +M/2 -l (-rg)-l 

2Äe[AB*]=      E     E      E       E E       < (134) 
*=-M/2   9=°   n=-M/2   r=-£m=-(l+r)7+l 

By inspection of Eq. (123) 

C = Re \p3+mbkob*    e^k-^)t-uJk(glß)JruJn{m.lß)\&(J 

After letting the 1/2 generated when applying Re[-] operator to the argument cancel 

the 2 outside of the summations, we get 

r       — \h        A*      f,j[(uk-Un)t-Uk(g/ß)+Un(m/ß)] 
£     —      [°kß0n,re 

+ b*    b      e-3[{^-^n)t-^k{glß)-^wn{mlß)]\ p9+™ac' (135) 

With a and c' defined by Eqs. (116) and (119), respectively. 

We now compute the term 2i?e[BC*]. This term will have six summations. Moving 

the Re[-] operator inside of the six summations to the argument yields the following 

by inspection 

L = Re \hkJtb*n re^^-w")t-^(g/ß)+^n(m/ß)]pg+mcd^ (136) 

After letting the 1/2 generated when applying the Re[-] operator in i [Eq. (136)] 

cancel the 2 outside of the summations, we can then write down the expression for 

2i?e[BC*] 

+M/2 -1 (-tq)-l +M/2 -1     -(r-l)g-l 

2jRe[BC*]   =       E      E       E E      E      E     *        (137) 
k=-M/2   <=~^ *=-(!+%+!   n=_M/2   r=~L    m=-rq 

I     =      \bkfö^*"'-"n)t-uJk(g/ß)+u,n(m/ß)] + b*k^bnT   x  . . . 

pf+mcd' 
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with c and d' defined by Eqs. (118) and (121). 

Now we must find 

/   K2\sAci?dt   =   K2 [T A A* dt + K2 [TBB* dt + K2 fee* Jo Jo Jo J0 

+K2 Jo  2Re [AC*] dt + K2 JT 2Re [AB*] dt 

+K2 I   2Re [BC*] dt 
Jo 

where we recall that 

K2 = P{\ - pf 

In the term A A* [Eq. (128)], we have the pulse multiplication aa' where 

dt 

(138) 

a = pT 
H<-l)' 

T-- 
a =PT 

'*H)" 
ß / \ ri), 

Arbitrarily assuming m > g, we sketch the product a x a'. 

I     | =>  Product is 0 
77} =>  Product is 1 

The product is 1 and exists from the maximum of (m/ß,g/ß) to T.  Either g ox m 

can be the largest. Hence, we will be integrating 

£ _ eM"k-Un)t-wk(g/ß)+un(m/ß)] 
(139) 

with the lower limit of integration being (l//?)max(0,m).  The upper limit of inte- 

gration is T. We consider two cases for Eq. (128). 
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Case 1:    k ^ n => tok ^ ton 

When k ^ n, uk / un because 

Uk kAu (140) 

where again u>k is the radian frequency spacing between Channel 0 and Channel k, 

and Au is the uniform radian frequency spacing between adjacent channels. 

K 
T +M/2       q-1       +M/2        q-1 

:2 / AA*dt = P(I-P)
2
   £   E   E    E /+m w;,0 

Jo 
X 

Letting 

Jt=-M/2   3=°   n=-M/2   m=° 

■Al (l//3)max(g,m) 

n^O 

x    =   j[(u>k-un)t-Wk(g/ß)+un(rn/ß)] 

dx   =   j [(uk - wn)] rfi 

[HI) 

then 

1: (l//3)max(s,m) 
^* 

pj[(wfc-W„)t-Wfc(fl//?)+t«'n(m//3)] 

j(Wfc -tun) 

1 

(l//9)max(g,m) 

0j[(w*-u;n)r-Wfc(g//3)+w„(m/^)] 

j(Wfc -wB) 

_gJ[(^fc-^n)(l//')max(s,m)-wfc(g//})+uM(m//3)] (142) 

Case 2:    k = n =>- uk = o>n 

Again similar logic to that used above [Eq. (140)] allows us to conclude Uk = un. For 

this case, the complex exponential £ reduces to 

_ J[o-«>k(g/ß)+«>7,(™/ß)] Z = e (143) 
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Now, since Uk = u>n, we can further reduce the complex exponential to 

- JlWßKm-g)] e = e (144) 

Therefore, for uik = ujn 

rp rp 

I £dt _ eMuk/ß)(m-g)]   I Jt = eJl("k/ß)(m-g)] 
J(l/ß)max(g,m) J{I/ß) max(g,m) 

Thus, we may write the expression for K2 J0 AA*dt 

rT +M/2      q-1      + M/2       <j-l 

T ~ ~8 max^'m^ 

(145) 

K f   AA*dt = P(l-P)>     E      E      E      E^+mx^i (146) 
^0  n  r\ 

k=-M/2   3=°   n=-M/2   m=° 

k^O n^O 

where 

hßb'nfl- j(uk -LOn) 

j[(uk-Un)T-wk(g/ß)+Wn(m/ß)] 

Vi = \ 
_pj[(uk-un)(l/ß)ma.x(g,m)-u>k(g/ß)+ujn(m/ß)] 

1 
T- -max(5r,m) 

for k ^ n 

for k = n ^o^0e
,[K//))(m-5)1 

I     |6*,ola 

Now we turn to the BB* term [Eq. (129)]. We have the pulse multiplication cc' where 

ßT(t)     \ _,     __   (        ßT 
c = PT c =PT ^g + (l + £)qj ~      rJ \m + (l + r)q/ 

Arbitrarily assuming m + (1 + r)q > g + (1 + £)q, we sketch the product c x c'. 
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c =PT 
'      ßT(t)      ' 
m + (l + r)q, 

Product is 0 
Product is 1 

g-\-(\+£)q     m + {l + r)q 

ß 

C = PT 
ßT(t) 

,9 + (!+%, 

The product exists and is 1 from 0 to minimum of 

(g + (l+Z)q     m + (l+r)q\ 

V ß ' ß ) 

Hence, we will be integrating the same complex exponential £ [Eq. (139)] as for the 

AA* term [Eq. (128)], but the upper limit of integration will be 

1 

ß 
min(# + (!+%, m + (l + r)q) 

while the lower limit is 0. We again consider two cases. 

Case 1:    k ^ n => u^ ^ i^in 

After interchanging the order of integration and summation, we will be integrating 

[see Eq. (129)] 

£ _ eJ[(uk-un)t-wk(g/ß)+w„(m/l3)] (147) 

Then 
f(l/ß) min(g+(l + t)q,m+{l+r)q) 
/ idt 

JO 
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1 

j(ujk -un) 

1 

J[(ujk-uin)t-üjk(g/ß)+wn(m/ß)] 
(lIß) min{g + (l+e)q,m + (l+r)q) 

M"k-un)(l/ß)rmn(g+(l+t)q,m+(l+r)q)-Luk(g/ß)+Wn(m/ß)] 

j(uk -un) 

_p][-M9lß)+"n(m/ß)} 

Then, factoring the result yields 

(1//3) min(S+(H-*)9,m+(l+r)9) 

(148) 

Jo 

1 J[-vk{g/ß)+un(mlß)} 

(dt = 

eJ[(uJk-u>n)(\/ß)xmn{g+(l+e)q,m+{l+r)q)] _ ^ 

j(uk -un) 

Case 2:    k = n ==> u>k = u;n 

This is similar to the A A* term for uk = u)n [see Eq. (144)] 

- J[("k/ß)(m-g)] 

(149) 

£ = e (150) 

and 

/„ 
■l/ß) min(g+(l+*)g,m+(l+r)<j) 

Jfak/PHm-g)] 

Jo 

(l/ß)min(g+(l+e)q,m + (l + T)q) 
dt 

min(g + (1 + £)q, m + (1 + r)q) - 0 (151) 

Thus, we may write the expression for K2 J0 BB*dt 

K 
T +M/2 -l (-(q)-l +M/2 -1 (-rg)-l 

:2/ BB^ = P(I-,)2   E    E     E       E    E     £    /+mx^ 
° fc=-M/2   '=-iff=-(l+<)9+l   n=_M/2   r=-Lm=-(l+r)q+l 

k^O n^O 

(152) 
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where 

if2 =  < 

/,i[-Wfc(g//3)+w„(m//J)] 
_  /ei[(u;fc-u;n)(l//3)min(g+(l+^)g)m+(l+ 

j(Wfc - Wn) 

for k ^ n 

= KtK,r (ei[(wfc/")(m-s)1 -min(<jr + (l+%,m + (l + r)g) 

for A; = n 

Now we integrate the CC* term [Eq.   (130)].   We have the pulse multiplication dd' 

where 

d = PT 

T   t mv 
\ m), 

1'T\t- fm + rq^\ 
d' = PT 

ß 

\ 
T 

m + rq\\ 
,     ß     ill 

Looking at the pulse multiplication graphically where we arbitrarily assume m + rq > 

g + Iq for the purpose of sketching the situation, we have 

|     | =>   Product is 0 
S7~/\ =»   Product is 1 

g + tq 

Looking at the equation for CC* [Eq. (130)], we see that after interchanging the order 

of integration and summation, we will be integrating the same complex exponential 

as for the AA* and BB* terms 

£ _ eM"k-UTi)t-wk(g/ß)+wn(m/ß)] (153) 
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where the lower limit of integration will be 

1 

ß 
max(g + £q,m + rq) 

while the upper limit will be T. Then for 

Case 1:    k ^ n =£■ Uk 7^ w„ 

/ (1//?) ma.x(g+tq,m+rq) 
£dt 

1 
ci[(wfc-u;n)i-^(5//3)+üjn(m//3)] 

j(uk - CJn) 

1 

_/=i[(
u,fc-a,")(1//?)max(9+^,m+r?)-u<fc(3//?)+Wn(m//3)] 

1//3) max(3+^g,m+rq) 

3i[(^fc-^n)T-wfc(s//3)+wn(m//?)] 

Case 2:    k = n => uk = ujn 

Again, similar to the AA* term, for k = n, the term 

£ _ eJ[(üJk-ujn)t-ujk(g/ß)+u>n(m/ß)] 

(154) 

(155) 

reduces to 

and then 

£ = e j[(ujk/ß)(m-g)} 

I (1//3) ma.x(g+£q,m+rq) 
(dt oi[Wß){m-g)] f dt 

J[(uk/ß)(m-g)] 

(156) 

(1//3) max(g+£q,m+rq) 

T - — max(# + £q,m + rq) (157) 

Thus we may write the expression for K2 J0 CC*dt 

+M/2 -1    -(i-l)q-l       +M/2 -1    -(r-l)g-l 

K j cc*dt = p(i-Pr   E    E    E      E    E    E P X V?3 

k=-M/2 

fc^O 

*=-L    3= n=-M/2 
r=—L    m=—rq 

(158) 
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where 

V?3 = < 

h,tb:iT 
j(u)k - LOn) 

J[{uk -wn )T-wk (g//3)+u/„ {m/ß)] 

_eMwk-un)(l/ß)max(g+tq,m+rq)-wk{g/ß)+Lj„(m/ß)]\ 

bkjbl<re^lWm-^ T - - max(# + £q, m + rq) 

(or k ^ n 

,   for A; = n 

Now we turn to the 2Re [AC*] term [Eq. (131)]. We have the pulse multiplication of 

ad' where 

a = pT 

Tit 
ß 

T 9 

fT(t_(™ + rq\\\ 

d' = pt 

V V        ß    I 

ß 

\ 
T 

m + rq 

I 

Looking at this graphically by arbitrarily assuming m + rq > g, we sketch the product 

axd' 

I     | =*>  Product is 0 
1 £23 =*  Product is 1 

Then we can see that the product ad' will exist from (1/ß) ma.x(g,m + rq) to T, which 

are the lower and upper limits of integration, respectively. 

Case 1:    k ^ n => u^ ^ un 

This expression has the two complex exponentials 

i   =   e i[(wfc-w„)t-^(g//3)+u;n(m//3)] (159) 
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g     =     e-ii(UJ
k-ujn)t-ujk(g/ß)+ujn(m/ß)] (160) 

to integrate. Letting 

u = -j {(uk -un)t- uk (giß) + Lon {m/ß)} 

and 

the integration yields 

L (l/ß)max(g,m+rq) 
gdt   = 

du = 

1 

[-j(uk-un)} 

1 

-j{uk -unj 

D-j[{uk-Un)t-uJk(g/ß) + ujn(m/ß)] 

(1//3) max(g,m+rq) 

,-J[(^k-^n)T-uik(g/ß)+un(m/ß)] 

[-j(uk ~un)] 

_e-j[(uk-ujn)(l/ß)ma.x(g,m+rq)-uk(g/ß)+üjn(m/ß)] (i6i; 

and 

(l/ß)max(g,m+rq) 
{dt 

1 J[(wk-ujn)T-ujk(g/ß)+ujn(m/ß)] 

j(uk -Un)  
L 

_eJ[{uk-Un)(l/ß)max(g,m+Tq)-ujk(g/ß)+uj„(m/ß)] (162) 

Case 2:    k = n =>• uk = un 

Looking at the expression for 2Re [AC*] [Eq. (131)], we see that for uk = un the two 

complex exponentials reduce to e>[K//?Hm-<;)] and e-i[(<W/3)(m-s)]? which are constants 

to the integration. Thus, we will integrate the product of the pulse functions ad' from 

0 to T. This is the only time function for this case. Then, looking at the sketch below 

Eq. (158) 

/    ad'dt = / dt = T - - max(o, m + rq) (163) 
JO J(l/ß)mzx(g,m+rq) ß 

Thus, we are ready to write the expression for 

K I   2Re [AC*] 
Jo 

dt 
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Then, 

K 

where 

+M/2      g-l       +M/2 -l    -(r-l)g-l 

/  2Re[kC*\dt = P{l-pf     E     E     E      E      E    ^ 
wi      S^O m-i      r=—L    m=—rq 

(164) 

k=-M/2   a n=-M/2 

/c^O n^O 

¥>4 

/+m«,r j(w* -^n) 
0j[(o;fc-u;„)r-wfc(a//?)+w„(m//J)] 

Dj[(wfc-ai„)(l//?)max(g,7n+rg)-i4/fc(g//9)+ai„(m//3)] 

1 - j[(w* -u>„ )T-wk (g/ß)+ujn (m/0)] 
■'T   i[-J(wk-Un)]   [ 

.e-j[(uk-Un){l-/ß)m!ix(g,m+Tq)-ujk(g/ß)+ujn(m/ß)] ,   for k 7^ n 

bkflb*Krc^lßKm-9^ + 6fc,06jfe,re-J'[(a'*//?)(m-fl)1] ^+m x 

T- -max(#, m + rg) for k = n 

We now turn to the 2Re [AB*] term [Eq.   (134)].   We have the pulse multiplication 

ac' where 

/ \ 

a = pr 
T 

t 
ß, 

c =PT 
ßT(t) 

m + (1 +r)q/ 

I 

To form a sketch, we arbitrarily assume m + (1 + r)g > #, yielding 
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1 k 

d                           a L 

1 

Y/ ' I 

( 3 t r 

|     I =»  Product is 0 
£2 =»   Product is 1 

#     m + (l + r)<? 

/? ß 

We see that the product will exist for m + (1 + r)q > g and will be 0 otherwise. Thus, 

unless m + (1 + r)q > g, the integral of 2Re [AB*] is 0. We will later create a "gating" 

function to account for this. 

Case 1:    k ^ n => uk ^ un 

For this case where m + (1 + r)q > g we will be'integrating the same complex 

exponentials as before 

f — ei[("k-"n)t-uk(g/ß)+<Mn(m/ß)] C1651 

and 

Q = e-J[(^k-^n)t-wk(g/ß)+w„(m/ß)] r 166^ 

We have computed these integrals before and will just substitute the new upper and 

lower limits in the final answer for this term 

Upper Limit :       (™ + (1 + ^ 
ß 

Lower Limit :       — 

If m + (1 + r)q < g, the integrals of the two complex exponentials are zero as the 

product of the pulse functions ac' = 0. Again, we will create a "gating" function to 

allow for this. 
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Case 2:    k = n =>• uk = wn 

Looking at the 2Re [AB*] term [Eq. (134)]. We see that the two complex exponentials 

reduce to 

7[(wfc/0)(m-s)]      and      e-j[{uklß){m-g)\ 

r(m+(l+r)q)/ß 1 
Ä = -g[(m + (1 + r)9) - flf] (167) 

These are constants to the integration with respect to t. Thus as before, we will only 

be integrating the product of the pulse functions ac' from 0 to T. The integral has 

value if m + (1 + r)q > g and is 0 otherwise. Then, if m + (1 + r)q > g, the limits of 

integration are the same as for the case u>k ^ un and 

/   ac'dt = / 
Jo Jg/ß 

Now we will create the "gating" function to null the integrals if the product ac' is 0 

from 0 to T. 

To indicate the zeroing/nulling of all integrals if g > m + (1 + r)q, we will create 

another gating function called G2(g,rn,r). 

' 1,       for g < m + (1 + r)q 
G2{g,m,r)=l (168) 

0,       otherwise 

We are now ready to write the expression for K2 JQ 2Re [AB*] dt. Then 

T +M/2      q-l      +M/2 -l (-rg)-l 

K* f   2Re [AB*] dt = P(l - pf     £     £      £       £ £       ^     (169) 
J° ,        „,,„   3=0 „,.„   r=-Lm=-(l+r)o+l 

k=-M/2 

k?0 

n=-M/2 
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where 

(/*+mW,rJ^ J[("k-"n)((m + (l+r)q)/ß)-wk(g/ß)+w„(m/ß)] 

0][(un/ß)(m-g)] 

+ (p9+mb1    b       -  \e-J[("k-"n)((m+0-+r)<j)/ß)-Uk(9/ß)+Ur>(m/ß)] 
\r k,0   n'r[-j(wk-wn)]   [ 

V?5  =  < 
-P-iHynlß)(m-g)\ ^2(9,m,r), for k / n 

bkflblreXWHn-rt + 6*06iire-J'Kw*^)(m-a)]' 

(j}[(m + (l+r)q)-g]\G2(g,m,r), 

p9+m  x  ... 

for A; n 

where 
1,       for g < m + (1 + r)q 

G2(g,m,r) = < 
0,       otherwise 

Now, finally we must write out the last (sixth) term of the ACI. We now need to find 

K2 [   2Re [BC*1 dt 
Jo 

Again, we look at the expression for 2Re [BC*] [Eq. (137)] to see the pulse multipli- 

cation cd' where 

c = pT 
ßT(t) 

/T   t_(m + rq\\\ 

v<7+ U + %, 
d' PT 

ß 

T 
m + rq 

J \V    V   ß   .. 
We sketch at this pulse multiplication by arbitrarily assuming g + (1 + tjq > m + rq. 
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Product is 0 
Product is 1 

m + rq    g + (1 + t)q 

ß ß 

Case 1:    k ^ n => u^ / u>n 

Here we will be integrating the complex exponentials 

Mu>k-un)t-u>k(g/ß)+wn(m/ß)] 

and 

£ = e 

g  -   e-Jl(uk-"n)t-Wk(9/ß)+Un(m/ß)] 

(170) 

(171) 

The integrals will have the following limits 

Upper : 

Lower : 

fl + (l+l)<? 

ß 
m + rq 

~ß~ 
The integrals will have value for m + rq < g + (1 + £)q and will be zero otherwise. 

We have computed these integrals before and will just substitute the new limits in 

the final answer for this term. We will create another "gating" function to account 

for the integrals "turning off" when m + rq > g + (1 + £)q 

' 1,   m + rq < g + (I + 
G3(gJ,rn,r) = < 

0, otherwise 

Case 2:    k = n ==>■ Uk = wn 

(172) 
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Looking at the 2Re [BC*] term [Eq. (137)], we see again that the complex exponentials 

reduce to 

ei[K//?)(m-ff)]       and      e-3[(»k/ß)(m-g)] 

which are constants to the integration with respect to t. Thus, in a similar manner 

as before, we will only be integrating the product of the pulse functions cd' from 0 

to T. The integral has value if m + rq < g + (1 + £)q and is zero otherwise. We have 

already created the "gating" function [Eq. (172)] to account for this turning on and 

off of the integral. Then, if m + rq < g + (1 + i)q the limits of integration are the 

same as for the case u>k ^ w„ and 

/    cd'dt = dt= -[(g + (1 + £)q) - (m + rq)] (173) 
JO J(m+rq)/ß p 

We are now ready to write the expression for 

K2 I   2Re[BC*]dt. 
Jo 

Then 

T +M/2 -i (-tq)-l +M/2 -l    -(r-l)g-l 

W 2Re[Bc*]dt = p{i-Pf   E    E    E      E    E   E   v« 

kjzO n^O 

(174) 

76 



where 

¥>6 = \ 

_J[(wk-u,n)({m+rq)/ß)-uk{g/ß)+wn(m/ß)] 

j[K-ü;„)((fl+(l+0?)/^)-w*(fl/j9)+"n(m/^)] 

[~j(uk - Wn)] L 
-j{(uJk-ujn)((g+(l+e)q)/ß)-Ljk(g/ß)+wn(m/ß)] 

_p-j[("k-"n)({™+rq)/ß)-uJk(g/ß)+u>n{m/ß)} \G3(g,£,rn,r),       for k ^ ra 

fcM&£:7.e^/^m-^ + ^/^e-^/^™-^1 p5+m x 

1 
-[(g + (1 + %) - (m + rg)] I Gz{g,Z,m,r), for k ■=■ n 

where G3(g,£,m,r) is defined by Eq. (172). We have now completed integrating all 

six terms of the ACL 

Recalling the expression for \s(t)\2 [Eq. (89)], we see that we still have to compute 

the following terms 

2Re[sBs*ISI] = 2Re[sisis*B], 

2Re[s*BsAci] = 2Re[sBsACI], 

and 

2Re[s*ISIsAci] = 2Re[sISisACI], 

multiply each by the constant K2 = P(l-p)2 and integrate each from 0 to T. We will 

use either form of the above three expressions depending on the ease of computation. 

Recall from Eq. (66) that 

/ 
9-1 

sB(t) = ^2p3b0fiPT 
3=0 

v r  ß 
TiV-ß. 

\ 

I 

for 0 < t < T (175) 

Let us look at sBs*ISI term.  Looking at the expression for sB(t) during the interval 

0 < t < T [Eqs. (66) or (175)], we see that sB(t) is real as 60,i £ {0,1}. Looking at 
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the expression for S[si(t) during the interval 0 < t < T [Eq.  (78)], we see also that 

sisi(t) is real as again 60i,- 6 {0,1}. Then sISI = s*ISI and sBs*ISI = SßSisi, and 

2Re[sBs*ISI] = 2sBsISi 176] 

Performing the multiplication yields 

2Re[sBs*ISI] = 2[SBSISI] 

9-1      -1 (-w)-l 
2E E     E    ^hflbojpr 

T 

T 
ß, 

!~i PT 
ßT(t) 

m + (1 + i)q/ 

9-1      -1      —(»"-1)9 — 1 

+2E   E       E     P3+mbo,obo,PT 
g=Oi=—Lo     m=-iq 

Tit- 
ß 

\ 

rp J 
PT 

ß    I 

T   t 
m + iq\\ \ 

ß 

\ 
T 

m + iq 
(177) 

/ 

f 

We see that when we multiply by K2 and integrate, the integral will distribute across 

addition to the two terms e and f. The integrals then move inside of the summations 

to the pulse function products. Now we need to figure the proper limits for the 

integration of the two pulse function products in e and f [Eq. (177)]. We note 

that the products of pulse functions are the only time functions in the expression 

2Re[sBs}SI}., so they are the only integrands in the expression. We examine the pulse 

multiplication in term e [Eq. (177)]. Let 

E = pT 
'*HY 
\ 

rji J 
PT 

ßT(t) 
^m + (1 + i)q, 

ß     ) 

Sketching E, we arbitrarily assume m + (1 + i)q > 9- 

(178) 
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Product is 0 
Product is 1 

g     m + (1 + i)q 

ß ß 

The integral /0 Edt will have value for g < m + (1 + i)q and will be zero otherwise. 

If g < m + (1 + i)q 

f   E dt = / 
Jo A 

(m+(l+i)q)//3 1 
Edt= dt = -[(m + (l + i)q)-g] 

hiß p 
(179) 

Since only the pulse function product is being integrated, we will create another 

gating function, which also gives us the value of the above integral when it turns on. 

This is similar to Gi(g,i,m,r) [Eq. (112)]. 

1 
,T I    * [("* + (1 +*M ~ 0]»       g<m + (l+i)q 
I    Edt — G4(g,i,m) — < 

Jo 
{ 0, otherwise 

Look at the pulse multiplication in term f [Eq. (177)]. Let 

(180) 

F = pT 

T[t- A\ 

\{T-ßJJ 

PT 

T[t 'rn+jq\\\ 

>     ß     )) 

\ 
T- 

m + iq\ \ 

,     fl     )     J 

(181) 

Sketching F, we arbitrarily assume m + iq > g. 
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Product is 0 
Product is 1 

We see that 

tT 1 
^   Fdt = T--max(g,m + i%q) (182) 

We can now write down the following integral 

K2 I   2Re[sBs*ISI]dt 

Substituting integrals f'0
rEdt and foFdt for the pulse function products in the 

2Re[sBs*ISI] expression [Eq. (177)], and multiplying by K2 yields the following result. 

Note: 

I   Edt'\s substituted for the pulse function product in e in Eq. (177). 

[T 
\   Fdt is substituted for the pulse function product in f in Eq. (177). 

Recalling that K2 = P(l — p)2 we have 

K2 /   2Re[sBs*ISI]dt = A'2 /   2[sBsISI]dt 
Jo Jo 

= 2P(1-/>)2E   E E        P3+mbo,0b0tiG4(g,i,m) 
3=0 i=-L0 m=-{l+i)q+l 

9-1     -1     -(.-1)9-1 

+2P(I-P)2Y: E   E ^mMo, 
fl=0»= — LQ     m=—iq 

T - -max(^,m + ig) (183) 

80 



w here 

Gi(g,i,m) = < 

■g[(m + (l + i)q)-g],       g<m + {l + i)q 

0, otherwise 

Now we need to compute 2Re[s*BsACi], multiply by K2, and integrate it from 0 to T. 

We note again that SB = s*B thus s*BsAci = sBsAci and since sAci is complex we will 

distribute the Re[-] operator over the summations of the SBSACI product in the same 

manner as in some of the previous terms. 

Computing the 2Re[sBsAci] — 2Re[sBsACi] term 

2Re[sBsAci] = 2Re[sBsACi] = 2Re 

PT 
T 

'T_9_\\       PJ 

W ß 

9-1       +M/2        9-1 

E   E   E^+mM*,oe,'ü"!(Mm//,))x--- 
5=0   k=-M/2   m=° 

\    ( 

PT 

1 \\T~ß 

T /  _m 

m\  V      ßt 

9-1       +M/2 -1 (-tq)-l 

+ E   E    E     E    /+m&oA,^(Mm//3)) x 
9=0   k=-M/2   (=-Lm=-(\+i)q+l 

PT 

vH)/ 
PT 

ßT{t) 

m + {l+£)q/ 

,-1       +M/2 -1    -(^-1)9-1 

+ E   E    E    E   pr^boflh^'-ww x 
5=0   *=-Af/2   fc_L    m=_^ 
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PT 

<T(t-l\\      I 

vvr-fh 
PT 

T   t- 
'm + £g\\\ 

V T 
m + £q\\ 

,     ß ) 

(184) 

The pulse products are G, H, and I as shown above. Then we note again that 60,i is 

real. Also, 6M G {0,e^fc} and ei^{*-{mlß)) are complex. We then have 

2Re[s*BsAci] = 2Re[sBsAci] = 

g-l       +M/2        g-1 

E      E       E (/+m&o,o^,oe^k('-(m//3))G + /+m6o,o^,0e^
a"=(i~(m/^))G) 

9=0   k=-M/2   m=° 

q-1       +M/2 -1 (-tq)-l 

+ E      E       E E        (^+m6b,o6Mej,Jfc(t-(,n//,))H +^+m60lo^e-^<t-(m^)H) 
5=0    k=-M/2    ^=-^rn=-(l+t)q+l 

?-l      +M/2 -l    -(*-l)9-l 

+ E      E       E       E      (p9+mbo,obktie^-WWl + f+nboflblje-W-WWl) 
9=0   k=-M/2   e='L    m=-lq 

k^O 

(185) 

We see that computing K2 f0 2Re[s*BSACi] will involve integrating each of the six 

terms inside of the three clusters of summations. The integrable part of each of these 

six terms is a complex exponential of the form 

ß _ eJuk(t-(m/ß)) (186) 

or 

fi = e -jcjk(t-(m/ß)) (187) 

The pulse products G, H, and I will provide the limits of integration. 
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Looking at G [Eq. (184)] 

Irrl. 9\\ 
G = PT 

T   t 
ß, 

\M)J 

(m(.     rn\\ 

PT 

T\t- 
ß 

T- 
m 

(188) 

V V      ß   / 
Sketching G, we arbitrarily assume m > g. 

Product is 0 
Product is 1 

Since the height of the pulse product G is 1 from (1 /ß) max(g, m) to T, we see that 

we will have the following limits of integration for the complex exponentials 

$ _ eM(t-(m//?)) (189) 

and 

-jwk(t-(m/ß)) H = e '-"-  *■■-"-» (190) 

which are the integrands in the first cluster of summations in the 2Re[s*BsACi] term 

[Eq. (185)] 

Upper Limit :       T 

Lower Limit :       — max(<7, m) 

Turning to H [Eq. (184)] 

H = PT 

vH); 
PT 

ßT(t) 
m + (l+£)qj 

(191) 
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Sketching II, we arbitrarily assume m + (1 + i)q > g. 

i i 

1 

V, 
( ) T 

E3 
Product is 0 
Product is 1 

g_    m + (l+e)q 

ß ß 

We see that for g < m + (1 + %, the upper and lower limits of integration for the 

integrands d = ei"*(<-(W/3)) and ^ = e-j^(t-(m/ß)) contained jn the second cluster of 

summations in the 2Re[sBsACi] term [Eq. (185)] will be 

Upper Limit :       -(m + (1 + t)q) 

Lower Limit : 
ß 

We will now create another "gating" function to null the integrals of d - eJ"*(<-(W/3)) 

and p = e-'^HW/*)) in the second cluster of summations in the 2Re[s*BsAci] term 

[Eq. (185)]. This nulling of the two integrals will occur if g > m + (1 + £)q. 

So we define 
'  1, 9<m + (l+£)q ' 

G5(gJ,m) = < (192) 
0, otherwise 

Now we compute the integrals of d = eJ"*(<-(™/0)) and ^ - e-jo>k(t-(m/ß)) for arbitrary 

upper and lower limits of integration 7X and ax 

I1' tidt =  r ejUk(t-(mW»dt = -^—e^^-^l^ 
J<*l Jai jUk 

71 

<*1 

(193) 
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Similarly for fj, 

r fidt = r e-^-WMdt =       1     e-jW(Mm/fl)) 
Jcti Jai [—jVk] 

Now we turn to the pulse product term I in Eq (184) 

1 = pT 

T[t- 
ß) 

\ 

PT 

ß      I 

Tit 

m + £q 

\ 

Sketching I, we arbitrarily assume m + £q > g. 

71 

Ofl 

m + ^\\\ 

(194) 

(195) 

|     | ==►  Product is 0 
77} =*•  Product is 1 

We see from the sketch that the upper and lower limits of integration of the integrands 

ß = eju,h(t-{m/p)) and ^ = e-jwk(t-(m/ß)) in the third duster of summations in the 

2Re[s*BSACi] term [Eq. (185)] are 

Upper Limit :       T 

Lower Limit :       — max(<7, m + £q) 

Now that we have the three sets of limits of integration for each of the clusters of 

summations and the indefinite integrals of d and fi, we are prepared to write the 

expression for 

K2 j   2Re[sBsACI]dt = K2 ^ 2Re[sBsACI]dt 
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Then, recalling that K2 = P{\ - pf 

K2 fT 2Re[s*BsACi}dt = K2 I   2Re[sBsACi}dt = ABA + BBA + CBA (196) 
7o Jo 

where 
9-1       + M/2        q-\ 

ABA = p(i -pfY,   E   E ^ 
9—0    , *n„    m=0 

fc^O 

in which 

Vi    =    p9+mb0fihfl 
juk 

+P3+mbo,oblfl- 

eJwk(T-(m/ß)) _ eJLjk((max(g,m)-m)/ß) 

e-JUk(T-{m/ß)) _ e-jujk((max{g,m)-m)/ß) 

-JUk\ 

,-1       +M/2 -1 (-iq)-l 

BBA=P(I-P)
2
Y: E  E   E   V8 
5=0   k=-M/2   t=-Lrn=-(l+t)g+l 

k?0 

in which 

<^8   =   P9+mbo,obkie 
juk 

Jujk((l+e)q/ß) _ pjuk((g-m)/ß) G5{g,£,m) 

+P9+mboobltT^—, \e-^((WMß) _ e-J^({3-m)/ß)] G5(g,£,m) 

where 

G5(g,t,m) 
' 1, <7<m + (l+% 1 

0, otherwise 

9-l       +M/2 -1     -(l-l)q-l 

CBA=P{\-P)2Y: E  E  E ^ 
3=0   Jfe=-M/2   fc_L    m= 
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in which 

ip9   =   p9+mb0,obk,i 
juk 

eJuk{T-(m/ß)) _ ejwk((max(g,m+eq)-m)/ß) 

+/+m M«; 
1 

-]Uk\ 

e-jwk(T-(m/ß)) _ e-ju,k((max(g,m+eq)-m)/ß) 

The last term we have to compute is K2 /0
T 2Re[s*ISIsACi]dt. We have already shown 

that SJSi 1S reali thus 

2Re[s*ISIsACi] = 2Re[sISisACi} (197) 

As before, we will multiply sISi and sAci- 

Look at SISI [Eq. (78)], we will let the first term be A and the second be B. Looking 

at SACI [Eq- (83)], we will let the first, second, and third terms be C, D, and E, 

respectively. Then 

sisiSAci = (A + B)(C + D + E) = AC + AD + AE + BC + BD + BE      (198) 

Then, we compute all six of the above terms individually 

-1 (-«<?)-! +M/2        q-\ 
Ac = E    E       E   E p9+mb0,th,oeJUJk{t-{mm x 

i=L0 g=-{l + i)q + l     k = _M/2     m=0 

k^O 

PT 
ßT(t) 

v0 + (l + O?, 
PT 
'*HY 

T - 
m 

ß     I 

(199) 

_1 (-t'g)-l +M/2        -1 (-tq)-l 

AD= E     E      E    E     E    /+mMM^fc(Mm//3)) x 
i=-L0 5=-(l+i)9+l    k=-M/2   i=-Lm=-(l+e)q+l 

PT 

it#0 

/?r(t) 
PT 

ßT(t) 
g + (l + i)qjr    \m+ (!+%, 

(200) 
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-1 (-«g)-l +M/2 _i    _(*_i),-i 

AE= E     E       E    E   E   ^+mMweiü,*(Mm/w 

t"=-Lo g=-(l+t')g+l   k=_Mj2   i=~L    m=-t-1 

X 

PX 
wo 

/rfi_/- + M\\ 

vfl' + Ci + O«, 
PT 

ß 

\ 
T *¥)), 

(201) 

-1    -(t-l)g-l      +M/2      9-1 
ßc= E    E      E   E /+mMM^(Mm//3)) x 

i=_Lo      9=_t-,        ^=_M/2    m=0 

PT 

rh 
,       ß ) 

T 9 + k\\ 
,    ß ) 

PT 

(mi      m\\ 

m 

\[T-ßJi 

(202) 

-1     -(t-l)g-l       +M/2 _i (-*9)-l 

^= E    E      E E     E    rMM^(HB/fl)x- 
i=-L0     s=-»'g       k=-M/2 i=-Lm=-(1+e)l+1 

k^O 

PT 

vv    v ß   J) 
T 

PT 
ßT(t) 

m + (l + £)q/ 
(203) 

-1     -(i-l)g-l      +M/2 _i    -(*-i),-i 

££= E    E      E    E   E   ^^^""^"x 
i=-L0     s=-«9       fc=_M/2   <=-£    ™=" 

k^O 

PT 

Tit 

T 'g + kX 
,   ß   ))) 

(m(,        (m + l<lX\\ 

PT 

T\t- 

T- 

\    ß 
m + Iq 

ß yy y 

(204) 
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When we distribute 2fie[-] across each of the terms AC + AD ^ and use Re[Z] = 

[Z + Z*]2, the 2 will cancel with the 1/2, and we will be integrating the same complex 

exponential terms d = eiü,*<'-W» and fi = e'^^-^/ß)) as we did before for the 

2Re[s*BsACi] term [see Eqs. (186) and (187)]. Then, all we need to do is investigate 

the pulse products for each of the six terms AC + AD + • • • to figure out the proper 

limits of integration. Also, we may need to create other "gating" functions to null the 

integrals if there are specific index occurences which make the specific pulse product 

0. 

The AC pulse product is 

PT 
ßT(t) 

,<7 + (l+0<7, 
PT 
H-JY 

m 

\ ß     I 
Arbitrarily assuming g + (1 + i)q > m, we sketch the' pulse product 

m    g + (1 + i)q 

ß ß 

We see that the limits of integration will be 

Product is 0 
Product is 1 

Upper Limit :       -{g + (1 + i)q) 

Lower Limit 
771 

1 
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Now we define the appropriate "gating" function 

f  1, m<g + (l+i)q 
G6(g,i,m) = < 

0, otherwise 

This nulls the two applicable integrals when the pulses do not overlap. 

The AD pulse product is 

(205) 

,0 + (l+ *')?/       \m + (l+t)qj 

Arbitrarily assuming m + (1 + £)q > g + (1 + j)9) We sketch the pulse product. 

I     I =*•  Product is 0 
77) =>  Product is 1 

9 + (l+ i)q     rn + {l+i)q 
ß 0 

We see that the limits of integration will be 

Upper Limit :       - min(g + (1 + i)q, m + (1 + £)q) 

Lower Limit :       0 

The AE pulse product is 

PT{g^mTq 
PT 

Tit w 
T- 

m + £q 
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Arbitrarily assuming g + (1 + i)q > m + £q, we sketch the pulse product. 

|     | =4>  Product is 0 
77} =►  Product is 1 

m + tq    g + (1 + i)q 

ß ß 

We see that the limits of integration will be 

Upper Limit :       -(g + (1 + i)q) 

Lower Limit :       — (m + ?q) 

Now we define an appropriate gating function 

'  1, m + eq<g + (l+i)q ' 
G7(g,i,£,m) = I 

0, otherwise 

This nulls the two applicable integrals when the pulses do not overlap. 

The BC pulse product is 

PT 

T[t- '0 + »g\\\ 
ß 

g + iq 

\ 

PT 

) 

Tit 
m\ \ 

V 
T- 

m 

ß     I 
Arbitrarily assuming g + iq > m, we sketch the pulse product. 

(206) 
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I     I =»  Product is 0 
£22 =>  Product is 1 

We see that the limits of integration will be 

Upper Limit :       T 

1 
Lower Limit :       -^ max(# + iq, m) 

The BD pulse product is 

/ 

PT 

Tit 9 + iq\\\ 

9 + iq 
\ 

PT 
ßT(t) 

m + (l+e)q/ 

V  ß  ))) 

Arbitrarily assuming g + iq < m + (1 + £)g, we sketch the pulse product. 

I     I =*>  Product is 0 
R^l ==*■  Product is 1 

9 + tq    m + (l + l)? 
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We see that the limits of integration will be 

1 
Upper Limit :       — (m + (I + £)q) 

Lower Limit :       ~(g + iq) 

We now define an appropriate gating function 

'  1, g + iq<m + (l+£)q ' 
G&(g,i,t,m) = I 

0, otherwise 

This nulls the two applicable integrals when the pulses do not overlap. 

The BE pulse product is 

PT 

Tit '9 + i(l\\\ 
ß 

g + iq 

\ 

PT 

I 

Tit 
'm + iq\\\ 

\ 
T- 

m + £q 

I 

Arbitrarily assuming m + £q > g + iq, we sketch the pulse product. 

|     | =*►  Product is 0 
F73 =*   Product is 1 

g + iq     m + Iq 

ß ß 
We see that the limits of integration will be 

Upper Limit :       T 

Lower Limit :       — max(<7 + iq, m + Iq) 

(207) 
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We will now apply the methods outlined below Eq. (204) and perform the 2i?e[-] 

operation on each of the six terms of s*ISIsAci — S
ISI

S
ACI- We will then integrate the 

resulting i? = j^-WI*)) and p = e-i"*(*-(W0)) terms in each of the six clusters of 

summations and multiply by the proper gating function, if necessary, to compute 

K2 [   2Re[s*ISIsACi}dt = K2 f   2Re[sISisACI]dt 
Jo Jo 

Recalling that K2 = P(l - pf 

r-p rp 

K2 f   2Re[s*ISIsACI]dt = K2 f   2Re[sISIsACI}dt = ACR+ADR+AER+BCR+BDR+BER 
Jo Jo 

where 
-1 (-«'?)-! +M/2        q-1 

ACR = P(I-P)
2
 x;     E       E   Evio 
i=-L0 g=-(l+i)q+l    fc__M/2   m=0 

k±0 

(208) 

in which 

Vio    =   P9+mbo,ih,o-: 
juk 

ejo;fc[(l//3)(5+(H-i)?)-m//3] _     ^ G6(g,i,m) 

+P9+mb0,tbl0] 
-JUk\ 

where 

G6{g,i,m) = 

* Note:     e±J"Urn/ß-m/ß) = ej0 = 1 

e-jwk[(l/ß)(g+(l + i)q)-m/ß] _      j 

* 

1, m < g + (1 +i)q 

0, otherwise 

Ge(g,i,m) 

_1 (-iq)-l +M/2 -1 (-lq)-l 

ADR = p(i~P)2 E     E       E E     E    vn 
i=-L0 s=-(l+«')<7+l   k=_M/2 l=-Lm=-(\+t)q+l 

k^O 

in which 

<?ii = P      botibkte- 
1 

.7^* 
ojwfc[(l/|0)mm(fl+(l+;)g,m+(l+%)-7n//?] _ Ju,k[-m/ß] 

(209) 
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V^MMI 
1 

-JUk] 

]üJk[(l/ß)min(g+(l+i)q,m+{l+e)q)-m/ß] _    -jujk[-m/ß] 

-1 (-«'?)-X +M/2 -1    -(t-l)q-l 

AER = P(l - ,)2  E        E E       E      E      V» 
i=-Lo g=-(l+0?+l    fc^_jw/2   £=_L    m=-^ 

(210) 

in which 

Vi2 

+/>"+,BMM 

P3+mb0,ibk,t 

1 

1 
9J«/*[(l//9)(*+(l+0«)-n»/fl _ Jvk[tq/fl 

[-JVk\ 

JUk 

juk[(l/ß)(g+(l+i)q)-m/ß] _ e-ju>k[tq/ß] G7(g,i,£,m) 

where 

G7(g,i,£,m) 
1, m + eq<g + (l+i)q* 

0, otherwise 

-1     -(i-l)q-l       +M/2        q-l 

BCR = p(i-P)2 E    E      E   E vis (211) 

in which 

Vl3 =   ^+m6o,.-6fc.o- ;wfc 

+P9+mboMo] 
"JWfcJ 

=jo;fc[T-(m//3)] _    jü,fc[(l//?)max(3+t'g,m)-m//3] 

-jwk[T-(m/ß)] _    -ju>k[(l/ß)max(g+iq,m)-m/ß] 

_1     -(t-l)g-l      +M/2        -l (-&?)-l 

^R = P(I-P)
2
E    E     E    E     E    vi4      (212) 
i=-LQ     g=-iq       k=-M/2   e=~L m=-(l+t)q+l 

k^O 

in which 

^14 

+Ps+mVi*w- 

p3+mb0lih,t 

1 

1 
Diw*[(l//8)(l+09l _ J"k[(i/ß)(g+iq)-rn/ß] 

~JUk\ 

-juk[(l/ß)(l+t)q]  _ e-jw*[(l/i9)(fl+i?)-W0] G8{g,i,£,m) 
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where 
1, g + iq < m + (l +£)q 

Gs{g,i,l,m) 
0, otherwise 

-1      -(i-l)9-l       +M/2 -1     -((-l)q-l 

BER = P(l-P)2   E       E E       E      E     Vis (213) 
i=-Lo      3 = -«? fc=_W/2    '=-i     ™ = -<9 

in which 

Vis   =   Pg+mb0,ih,£ — ejüjk[T-(m/ß)] _ eJu;fc[(l//ö)max(ff+i?,m+^?)-m//3] 

e-j^[T-(m//3)]  _ e-ju)k[(l/ß)inax(g+iq,m+iq)-m/ß] 

We have now computed all terms of 

/   \s(t)\2dt = K2 I   s'{t)s'{t)*dt        [see Eq. (89)] (214) 
Jo Jo 

Now we recall from Eq. (89) that 

[T \s{t)\2dt = K2 jT s'{t)s\t)*dt = K2 [T \s'(t)\2dt 
Jo Jo Jo 

= K2 [T \sB\2dt + K2 [T \sISi\2dt + K2 fT \sACi\2dt 
Jo Jo Jo 

+ K2J   2Re[sBs*ISI]dt + K2 J   2Re[sBsACi}dt + K2 J  [s*ISIsACi]dt (215) 

We will now extract the answers for the above six integrals from the previous rather 

lengthy derivation so that we will have the final answer for 

/   \s{t)\2dt = K2 j   \s\t)\2dt (216) 
Jo Jo 

in one single place. Now, before we consolidate the terms we once again restate 

max(xi,x2): Choose largest of x\ or x2, which are both positive. 
If x\ = x2, then raax^i,^) = "i = %2- 

min(xx,X2): Choose smallest of x1 or x2, v  ;ich are both positive. 
If X\ = x2, then min(xi,x2) = x\ = x2. 
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Also recall that K = y/F {1 - p) and K2 = P{1 - p)2. Then we have 

jT \s(t)\2dt = K2 f s'(t)s'(tydt = K2 £ \s'{t)\2dt 

which has the following six integrals given by Eq. (215) 

rT .„ „   «Zj »Zi    .._ /_      (max(gim)\ 

(217) 

W   \sB\2dt = P(l-P)2bl0ZEP9+m (T- Pf (218) 

For 

r 
70 

A'2 /    |3/S/|
2rf< 

we recall the result of Eq. (117) 

\sr,T\2dt = K2 f  Adt+ f  Bdt f  Cdt+ f  Vdt 
Jo Jo Jo Jo 

1 (-i'g)-l -1 {-rq)-l 

K2 f   sISIs*ISIdt = K2 f 
Jo JO 

K2 fTAdt = P(l-p)2  t,     *E        E E       ?° 
Jo i=-L0 g=-(l+i)q+l T=-L0 m=-(l+r)q+l 

(mm(g + (1 + i)q, m + (1 + r)q) 

(219) 

in which 

<£o = p9+mbo,ibo,r 
ß 

K2 [TBdt + K2 I  Cdt = 2K2 f  Bdt = 
Jo Jo Jo 

_1 (-iq)-l -1     -(r-l)g-l 

2P(l-pf   £ £ £        E      ^+mV.-VrGi(^,i,m,r) 
i=-L0 s=-(l+t')?+l r=-L0     m=-r<j 

where 

Gi{g,i,m,r) = < 

r 1 
[(5- + (1 + «)?) - (m + rq)}, for m + rq < g + (I + i)q 

and 

0, otherwise 

-1     -(t-l)g-l     -1      -(r-l)g-l 

K2 f Vdt = P{\-p)2 £     £     £     £    /+mMo, 
■'0 t'=-Lo      g=-t'?     r=-L0     m=-rg 

1      fm&x(g + iq,m + rq) 

ß 
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We know from Eq. (138) that 

K2 I   \sACi\2dt   =   K2 I   AA*dt + K2 [   BB*dt + K2f   CC* 
Jo Jo Jo Jo 

+K2 [T 2Re[AC*)dt + K2 I   2Re[AB*]dt 
Jo Jo 

+K2 (  2Re[BC*]dt 
Jo 

So we have the following six ACI components 

dt 

+ M/2       q-\       + M/2        q-1 

K s2 

, ■ , /„      (7=0 , , .„      771 = 0 k=-M/2   y n=-M/2 

fc^O njtO 

where 

Vi 

hflb: 
1 J[(wk-uJn)T-ujk(g/ß) + ujn(m/ß)] 

n'°j(uk-unJ 

_eJ[(uk-Un)(l./ß)max(g,Tn)-ujk(g/ß)+ujn(m/ß)] 

^,o^>0e
j[K//3)(m"s)] [T -Jmax(5lm)] , 

l    IM2 

for k / n 

for k = n 

(220) 

/ AA*dt = P(l-P)2    E     E     E     E/+mx^i        (221) 

T +M/2 -1 {~lq)-\ +M/2 -1 (-rq)-l 

K2    BB*dt = p(i-P)2   E    E    E       E    E     E    /+m*v>2 

(222) 

where 

V?2 

bkjbl n,r 

ej[-uk(9/ß)+"n(m/ß)} 
feJ[{ujk-uJn){l/ß)min{g+(l+e)q,m+(l+r)q)] _ A 

for k ^ n 

bkiblT (eJ[(^/ß)lm-g)] 
ß 

mm(g + (1 + i)q, m + (1 + r)g) 

for k = n 
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+M/2 -1    -(*-l)g-l      +M/2 -1    -(r-l)q-l 

A- / cc-A = p(i - Pf   E    E   £      E    E    E   />5+m 
0
 ,        ,,#„   £=-£     g=-Zq **/*   T=-L    m=-rq 

k--M/2 n=-M/2 

X <p3 

(223) 

where 

V3 

M;.r j(wfc - w„) L 
M«>k -"r, )T-wfc (g/ß)+wn (miß)] 

_pj[(wfc-w„)(l//9)max(5+€9,m+rg)-w/fe(fl/i9)+w„(m//J)] 

6t/6t.eJ'Kü;fc/^(m-fl)] 
^"fc T — — max(# + £<?, m + rg) 

for fc T^ n 

,   for & = n 

+M/2       ,-1       +M/2 -1     -(r-l)g-l 

A
2
/ 2Re[Ac*} = p(i-Py   E   E   E    E   E   ^     (224) 

0 ,,,     3=0 .,,„   r——L    m=-rq 
k=-M/2   a n=-M/2 

fc^O n^O 

where 

V?4 

ft-^hfiblr 
1 

,i(wfc -wn) 
0i[(w* -«»)T-wfc (g/ß)+u>n(m/ß)] 

J[(wk-un)(l/ß)max(g,m+Tq)-Wk(g/ß)+wn(m/ß)] 

1     g+mfr*    U 

.[-j(Wfc-W„)] 
-j[K-w„)T-wfe(a//?)+w„(m//?)] 

_p-j[(wfc-wrO(l//3)max(3,m+ri7)-wfc(s//3)+u>„(m//3)] 

&fc|0&£ire'Kw*/Wm-^ + bifih,re-M"k/Mm-rt 

T - -ma,x(g,m + rq) 

,      for k ^ n 

pg+m x 

for k = n 
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+M/2      q-l       +M/2 -l (-rq)-l 

K2 !   2i?e[AB*] = P(l - Pf     Y,     E      E       E E       ^        (225) 
fc=-M/2   5=°   n=-M/2   ^=-^m=-(l+r)9+l 

k^Q njtO 

W here 

P9+mh,ob:tl 
1 

j(Wfe -wn) 
0j[K-u;„)((m+(l+r)9)//3)-ü;fc(5//3)+ü;n(m//9)] 

0j[(^„//3)(m-5)] 

+  \P9+mbl,0bn,r 
1 

V5 =   < 
[-j(uk -un)] 

3-J[K//3)(m-fl)] G2(g1m,r) 

-j[(wk-un){(m + (l+T)q)/ß)-u,k(g/ß)+un(m/ß)] 

for k ^ n 

&fc,o^,rei[K//?)(m~9)] + 6fcio6jfc,re~Jl(ü'*//J)(m"9)1 

i[(m + (l + r)g)-5]JG,
2(^,m,r), 

/95+m x • • • 

for A; = n. 

where 

G2{g,rn,r) 
1, for g < m + (1 + r)q 

0, otherwise 

T +M/2 _i (-*g)-l +M/2 _i    -(r-l)g-l 

W   2Re[BC*} = P(l-p)2     E       E        E E       E       E     ^ 
° k=-M/2 <=-ia=-(i+/)?+i  n=_M/2  '=-*-   "•=-'■9 

(226) 

100 



where 

¥>6 

P9+mh,eb*- 
J{UJk -Un) 

j[(uJk-uJn)({g+^+^)/ß)-^k(g/ß)+^n(m/ß)] 

_pj[(uk-"n)((m+rq)/ß)-u>k(g/ß)+u>„{m/ß)] 

>P °k £°n,r 
1 ,-j[(wk-vn)((g+(l+e)q)/ß)-»k(g/ß)+Vn(m/0)] 

_e-j{(uk-"n)((rn+rq)/ß)-wk(g/ß)+cun(m/ß)] \G3(g,l,m,r),       for k ^ n 

Mfcr
ej[K//3)(m~s)1 + 6fci/6jb,re-j[(ü,fc^)(m_9)1 pg+m x 

(\[{g + (1 + %) - (™ + r?)] J G3(flf, A m, r), 

where G3(g,£,m,r) is defined in Eq. (172). 

Now, for the last three terms of 

[T \s(t)\2dt = K2 [T s'{t)s'(t)*dt = K2 [T \s'(t)\ 
Jo Jo Jo 

for k = n 

'dt 

which are 

and 

T i*T 

K2 f   2Re[sBs*ISI]dt ■        K2 /   2Re\sBsACi_ 
Jo Jo 

dt 

K2 [T 2Re[s*ISIsACi]dt 
Jo 

K2 f   2Re[sBs}SI]dt = K2 /   2[sBsISi]dt = 
Jo Jo 

2P(1-/>)2E   E E        P9+mbo,obo,iG4(9^, 
g=Oi=-Lo m=-(l+i)q+l 

m) 

q-\      -1      -(«"-1)9-1 

+ 2P(i-/>)2E E    E. /+mM>c« 
g=Oi= — Lo     m——iq 

T — — max(g, m + iq) (227) 
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w here 

G4(g,i,m) = < 
-[(m + (1 + i)q) - g], g < m + (1 + i)q 

0, otherwise 

rp rp 

K2 f   2Re[s*BsACi]dt = K2 f   2Re[sBsACi}dt = ABA + BBA + CBA 
Jo Jo 

9-1       +M/2        9-1 

ABA = P(l - p)2 £     £     £>7 
9=0    ,        »,;„    m=0 a k—-M/2 

k^O 

in which 

<v,7     =     /0P+"'6006fc0_i_[ei^(r-(m//?))_eJü;fc((max(j,m)-m)//?) 

+^ °0,00jt,0l 
1 

-JUk\ 
e-JUk{T-{m/ß)) __ e-jujk((max(g,m)-m)/ß) 

where 

9-1       +M/2 -1 (-tq)-l 

BBA = p{i-PfZ   E E     E    ^ 
3=0   k=-M/2 <=-im=-(l+/),+l 

fc#0 

</?8      =     P9+mb0,oh1£ — 
]Uk 

eju>k((l+t)q/ß)  _ eJU>k((g-rn)/ß) G5{g,£,m) 

+p3+mb0}0b*kii-!— [e-^((1+^)^) - e-^((9-m)/ß)] G5(g,£,m 
-J">k\ 

where 

G5{g,£,m) 
'  1, g<m + (l+£)q ) 

0, otherwise 

7-1       +M/2 -1     -(^-1)9-1 

cBA = p{i-p)2Y,   E    E    E   ^ 
9=0   k=-M/2   i=~L    m~- 

k+0 
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¥9 =   p9+mbo,obk, 
JWk 

4y+m6oÄ, 
-jwfcj 

Juk{T-(m/ß)) _    j^k((max(g,m+eq)-m)/ß) 

e-jüJk{T-{m/ß)) _ e-juk{{mnx(g,m+iq)-m)/ß) (228) 

K2 I   2Re[s*ISIsAci]dt   =   K2 [   2Re[sISisACi}dt 
JQ JO 

=   ACR + ADRAER + BCR + BDR + BER 

-1 (-tg)-l +W/2       9-l 

ACR = P(I-P)
2
 E     E       E   E^IO 
i=-Lo5=-(l+t)g+l    k=_M/2   m=0 

(229) 

where 

Vio   =   P3+mb0libk,o^ 
juk 

eJWk[(l/ß)(g+(l+i)<l)-rn/ß} _     2 G6(g,i,m) 

+P3+mbo,ibl,0] 
-JUk\ 

where 

G6(g,i,m) = 

e-jwfc[(l//?)(g+(l+09)-m//3] _     2 

* 

1, m<flf + (l+i)? 

0, otherwise 

Ge{g,i,m) 

-1        (-tg)-l +A//2        -i        (-<s)-i 

ADR = p(i - p)2 E     E       E    E     E     vii 
t=-Lo s=-(l+t)?+l   k=_M/2   t=-Lm=-{l+i)q+l 

in which 

Vii    =   P9+mbo,ibk,e 
juk 

Jwk[(l/ß)min{g+(l+i)q,m+(l+e)q)-m/ß] _    juk[-m/ß] 

(230) 

,«+rai      L. ^ fc-iwfc[(l//3)min(g+(l+i)9.m+(1+^)?)-m//3] _ p-j'^t-"1/^] 
+P öO,t°fc/r_ •      i  [e e 

"JWfc 
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_l (-i'g)-l +M/2 -1    -(£-l)q-l 

AER = p(i - pf Y.     E       E    E    E    v» 
i=-L0 g = -(l+i)q + l    k = _M/2    l=~L     m = -£q 

(231) 

in which 

¥>12 p9+mb0tibkt — 
juk 

L 
eJu,k[(l/ß)(g+(l+i)q)-m/ß] _ eJuJk{£q/ß] 

+P3+mb0,ib 
1 

where 

k,£] 
-JWfcJ 

D-io.(t[(l//3)(5+(l + = )<?)-m//3]  _ p-jwk[eq/ß] G7(g,i,£,m) 

G7(g,i,£,m) = < 
f  1, m + ^7 < flf+ (1 +0? 

0, otherwise 

in which 

-1      -(i-l)g-l       +M/2        q-\ 

BCR = P(I - P)2 E    E      E   E vis 
.•=-Lo      3 = -«? fc = _M/2    m=0 

k^O 

(232) 

Via   =   ^+m&oA,cr 
juk 

Juk[T-(m/ß)] _    jüjk[(l/ß)max(g+iq,m)—m/ß] 

-Ln3+mh    ■/>* ~"" Ip-J^fctr-^/jfl)] _     -ja)fc[(l//?)max(fl+i'g,m)-m//3] 
-TP °0,i°k,0r      ■      l   |e e 

-1     -(:-l)?-l       +M/2 _l (-*?)-l 

BDR = P(l-p)2  E       E E E E Vi4 (233) 
t'=-L0     a=-ig        k=-M/2 i~~L m=-(l+£)q+l 

k?0 

in which 

Vl4 P9+mboM- 
juk 

eju,k[(l/ß){l+£)q] _ ei^fc[(l//5)(5+i?)-m//3] 

+^+m6o,-*fc 
1 

M 
-JW* 

e-jijk[(l/ß)(l+t)q] _ e-jwk[(l/ß)(g+iq)-m/ß] G8(g,i,£,m) 
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where 

G8(g,i,e,m) = 
1, g + iq<m + (l + e)q ' 

otherwise 

-1     -(«"-1)9-1      +M/2 -1    -(^-l)g-l 

BER = p(i - ^)2 E    E     E E   E   V» 
j=-L0     3=-«9        k=-M/2 i=~L    m~~iq 

k^O 

in which 

_      „a+m-h     A 1      \J^k[T-(mlß)] _    jüJk[{l/ß)m^(g+iq,m+eq)-m/ß] 
Vl5      —     P O0,i°k,t- e e 

(234) 

+P9+mb0,ib;,t 
1 -jwfc[T-(m/j3)] _    -jwk[(l/ß)m&x(g+iq,m+iq)-m/ß] 

We have now laid down all terms of 

rT tT 
(   \s(t)\2dt = K2 I   s\t)s'{tydt = K2 I   \s'{t)\2dt 

Jo Jo Jo 

This will be used to compute the detection statistic X where 

X = 11 f   \s(t)\2dt 
Jo 

where 1Z is the responsitivity of the photodetector (A/W). This will be used to com- 

pute probabilities of bit error for the dense WDM system. 
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APPENDIX B 

LIMITED CASE OF THE COMPLETE MODEL 
(10 PROGRAMMABLE TERMS) AND RESULTING 

PROBABILITY OF BIT ERROR EQUATIONS 

In Appendix A we derived the complete expression for J0 \s(t)\2dt. Referring to the 

OOK receiver structure in Fig. 1, we note that the deterministic signal component 

of the random variable appearing at the output of the integrator is 

X=Tl [   \s{t)\2dt (235) 
Jo 

where TZ is the responsivity of the photodetector (A/W) and s(t) is the complex 

baseband output of the Fabry-Perot filter. Note that the photodetector detects s(t) 

and produces an output current H\s(t)\2.   We will call the integrator output the 

decision variable Y where 

Y = X + N (236) 

We note that AT is a Gaussian random variable with mean zero and variance NQT 

N ~ N(0, N0T) (237a) 

and 

N= I   n(t)dt (237b) 
Jo 

where n(t) is the postdetection additive white Gaussian noise and No (A2/Hz) is the 

two-sided current spectral density of n(t). 

Now we will set up a fairly limited but realistic case for which we will program 

the appropriate terms derived in Appendix A and generate the probability of bit 

error. Letting 

U   =   1        L=0 

2irkl 
<f)k   =   0       ujk = -jr- 
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iük — 2irkI/T is a special case of the radian frequency spacing between Channel 0 and 

Channel k. Recall again that / is the normalized channel spacing integer (/ > 0), and 

T is the data bit period (s). L = 0 and <j>k = 0 means that we will only model and deal 

with adjacent channel interference (ACI) from the bits in the adjacent channels which 

occur during the detection window 0 < t < T. Recall that the adjacent channels are 

symmetric in frequency around Channel 0, the channel of interest. L0 = 1 means that 

we will model the effects of a single ISI bit trailing the detected bit of interest 60,o in 

Channel 0. <j>k = 0 means that the phase offset between Channel 0 and Channel k is 

0, or that all adjacent channels are bit synchronous with with Channel 0. 

Then, since (pk = 0, L = 0, and bk,t £ {0,ej4>k}, we let 

b-M/2,o = b-M/2+i,o = ■■■ = 6_li0 = b~    and    b~ €{0,1} (238) 

b~ is the left adjacent channel bit pattern and all M/2 of the left channel bits will be 

1 or 0 simultaneously during detection window 0 < t < T. And again, since (f>k = 0, 

1 = 0, and bk/ e {0,e**}, we let 

bM/2jo = bM/2-i,o = ■■■ = bh0 = b+    and    b+ G {0,1} (239) 

b+ is the right adjacent channel bit pattern and all M/2 of the right channel bits will 

be 1 or 0 simultaneously during the detection window 0 < t < T. Also, we know 

LQ = 1, and &o,{ € {0,1}, so using Eq. (1) or Eq. (41) we have 

öo.-i e {0,1}    and    &o,oe{0,l} (240) 

We define an ACI/ISI bit pattern 

^P = {b~ ,b+X,-x) (241) 

Note that 6~, 6+, and 60,-i 
are 0 or 1 with probability 1/2 yielding eight possible 

values of ißp. 
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Now let use define an ACI/ISI bit pattern set 0 

0 =  {01, 02, ■•■,0s} (242) 

We can denote each individual element in the set 0 as 0P where p = 1,2, 3,..., 8 as 

there are eight possible values of 0p, and 

0 = {0P} (243) 

w here p — 1, • • •, 8. Now we define 

XO(0P)   =   X(ipp, &o,o = 0)    or    X evaluated at the current value of 0P with 60,o = 0 

(244) 

Xi(ipp)    =   X(0p,6o,o = 1)    or    X evaluated at the current value of 0P with fe0,o = 1 

(245) 

It can be shown that the conditional probability of error for the dense WDM 

system given the ACI/ISI bit pattern 0P is [2, 4] 

P(error|0p) = -Q I       ^^      I + ^Q [     ^^ 

Q^ = wJ>~y2/% 
where 

There are eight possible members of the set 0 

xj) = < 

VT is the detection threshold where 

(246) 

(247) 

(Vi=000 05 = 1 0 0 ^ 
02 = 0     0     1 06 = 1 0 1 
03 = 0      1     0 07 =  1 1 0 

{   04 = 0      1      1 08 =  1 1 1   J 

(248) 

VT 

X0 max +Xi min 
(249) 
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and 

X0 max = max (X0(tpp)) (250) 

i.e., to find X0 max, compute all eight values of XQ [see Eq.  (244)] and then choose 

the maximum, and 

X1min = min(X1(^p)) (251) 
{ipp} 

i.e., to find X\ min, compute all eight values of X\ [see Eq.   (245)] and then choose 

the minimum. Then, by the law of total probability, the probability of bit error is 

Pb = P (errors) P(V>i) + P (error|</>2) P(02) + --- + P (error^s) Ptys)       (252) 

Assuming all bit patterns are equiprobable 

P(t/,l) = P{tk) = ... = P(rl,a) = l (253) 

Then we can easily see that 

Again, we note that 
rT x = n 

^ = 1 XXerrorh/v) (254) 

. /   \s(t)\2dt (255) 
Jo 

where f^ \s(t)\2dt was computed in Appendix A and consisted of 21 terms ("clusters 

of summations") [see Eqs. (218)—(234)]. Given our parameters L0 = 1, L = 0, (f>k = 0, 

and uik = 2irkI/T, 11 of the 21 terms drop out and we are left to compute in order 

ten to generate the probability of bit error. If we name these ten terms ("clusters of 

summations") SUM1,SUM2, • • •, and SUMio, then for L0 = 1, L = 0, <f>k = 0, and 

u>k = 2irkI/T 

(   |s(i)|2^ = SUM1 + SUM2 + --- + SUM10 (256) 
Jo 

and using Eq. (255) 

X = ^(SUMi + SUM2 + • ■ ■ + SUMio) (257) 
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Now PT may be factored out of each sum. So we define 

SUM,-= FZXQUOT;)       ; = 1,---,10 (258) 

So 

X = ^JPT(QUOT1) + ft PT(QUOT2) + • • • +1ZPT(QU0TW)        (259) 

and 

X = ft PTfQUOT! + QUOT2 + • • • + QUOT10] (260) 

Also, letting QUOT^ + QUOT2 + • • • + QUOT10 = QUOTSUM, we also see 

X = 7L PrfQUOTSUM] (261) 

We can also say that, in general, QUOT\, QUOT2, • • •, QUOT10, and QUOTSUM are 

dependent functions of ipp and 60,o- Thus, we may write in general 

QUOT^p, 6o,o), QUOT2(^p, 6o,o), • ■ ■, QUOT10(V>P, 60,0) 

and 

QUOTSUM(^,60,o) 

Now we can see that 

XxO/v)   =   ftPT[QUOTSUM(^,60,o = l)] (262) 

X0{^p)   =   ft PT[QUOTSUM(</>p, 6o,o = 0)] (263) 

Recalling that 
X0 max +X\ min 

*T  =    n  

we let 

Vv max   =   Value of tpp which causes maximum value of 

of XQ (or maximum value oiX with 60,0 = 0). (264) 
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and 

i>v min   =   Value of ipp which causes minimum value of 

of X\ (or minimum value oiX with 60,o = 1)- (265) 

Then using Eqs. (249), (262)-(265) 

T/ _ ftFT[QUOTSUM(0„ max,60,o = 0) + QUQTSUM(^P ^Xy = 1)] 

Now using Eqs. (246), (262), (263), and (266) 

P(erTox/xpp) = 

\Q ((^ffj ([QUOTSUM(^p,6o,o = 1)] 

QUOTSUM (Vv max, Vo = 0) + QUOTSUM (</>P ^n, &o,o - r 
2 

+ln ((nPT\ /[QUOTSUM(V>p max,6Q,Q = 0) + QUOTSUM(V>p min,60,0 = 1)' 
2     \\y/N0TJ \[ 2 

-[QUOTSUM(V>p, 6o,o = 0)]) ) (267) 

Thus, we see that P(error\ipp) is directly related to the signal to noise ratio which we 

will call Z. 
KPT       rr~ z=vmr=7llNo (268) 

Thus, when we compute a probability of the bit error graph, we will choose a suitable 

range of values for Z, a value of free spectral range-bit period product ßT, and several 

values of the number of adjacent channels M. For each of these values of M, we will 

compute a probability of bit error trace. To compute a point on a trace, choose a value 

of Z, compute all eight values of P (error |?/>p), sum all eight values of P(error/^/>p), and 

divide by 8 [see Eqs. (248), (254), and (267)]. The point is then plotted. 
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Recall that 
T 

ß 
then 

(269z 

q = ßT (269b) 

We will use this and the fact that [see Eq. (259)] 

X = nPTiQUOTJ + KPTiQVOTi) + ■■■ + KPT(Q\JOTw) (270) 
" ^ '        s * ' v v ' 

Term #1 Term #2 Term #10 

to compute the probability of bit error graphs. We also use Eqs. (256), (257), (258), 

(260), (261), (262), (263), (264), (265), (266), and (267) in this endeavor. 

We now proceed to write out the ten terms of X, which we will use to compute 

the probability of bit error graphs. Before we begin we recall that max (x-i,x2) 

means choose the largest of X\ or x2. If x2 = x2, then max (xx,x2) — X\ = x2. 

Also recall that min(x1,x2) means choose the smallest of xx or x2. If xx = x2, then 

min (xi, x2) = xx = x2. The first term to be programmed will be Eq. (218), Appendix 

A. Factoring out a T we get 
9-1 ?-i 

jT(w)%,i;xy+m i- 
j:Om=0 \ \ 

fmax(g,m) 
SUM! = PT(l - pfblo E E P9+m   1 - £'    ' (271) ßT 

Using q = ßT and multiplying by TZ we get 

Term #1 = HPT(1 - ^Xo E^ EV
+™ (l " (E^^)) <272) 

With -Lo = l and q = ßT, the first term ("cluster of summations") in Eq. (219), 

Appendix A, becomes 

ßT-lßT-l /-, \ 

^(1 - P? E   E (V-i)2    -R min(5, m) (273) 
fl=l    m=l V/5 / 

Factoring out a T" and multiplying by % we get 
ßT-lßT-l -I 

Term #2 - ftPT(l - /^(fco.-i)2 E   E /+m^min(<7,m) (274) 
5=1    m=l "-* 
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With L0 = 1 and q = ßT, the second term ("cluster of summations") in Eq. 

(219), Appendix A, becomes 

ßT-1 2/9T-1 

2P(l-p)2J2    E   p'+m{bo,-i)2G1(g,i = -l,m,r = -l) (275) 
3=1   m=ßT 

W here 

Gi(g,i = -l,m,r = -!) = < 0 
[g-(m-ßT)}, for m — /?T < g 

0, otherwise 

Factoring a T and multiplying by 1Z, we arrive at the expression for Term #3 

/3T-1 2/3T-1 1 
Term#3 = ftPTx2(l-/))2(&0,-i)

2 £    E  /+m   ^ x G^,.'=-l,m,r =-1) 
3 = 1   m=,ST LJ 

(276) 

With LQ = 1 and 9 = /3T, the third term ("cluster of summations") in Eq. 

(219), Appendix A, yields Term #4, after factoring a T and multiplying by H. 
2/3T-1 2/3T-1 

Term#4 = ftPT(l-p)2(&0,-i)
2   £     £/+* 

3=/3T m=ßT 
l-j^m<ix(g-ßT,m-ßT) 

(277) 

The next applicable term is Eq.   (221) of Appendix A. Our given parameters 

include 4>k = (ßn — 0. We can then say by recalling that bk,e £ {0, eJ'*fc} 

We will also use the facts 

&n,o - bn,o    and    b*kfi = bkfi 

2irkl , 2irnl 
^k =    ~       and    uir, 

(278) 

(279) rr\ 11 m 

where / is a positive integer called the normalized channel spacing integer. Now, by 

slightly reworking the u>k ^ un expression by substituting the results given in Eqs. 

(278) and (279) into the appropriate places, we get 

T 
Vi faflbnA 

'j[2nl(k-n)] L 
J[2*I(k-n)-(2*kI{g)/ßT) + {2™I(m)/ßT)] 

_   j[(2*I/ßT)(k-n) max(g,m)-(2irkI{g)/ßT) + (27rnI(m)/ßT)] ioxk^n  (280) 
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Note: The 2TrI(k — n) term in the first phasor of Eq. (280) contributes integer 

multiples of 2ir to the phasor, and so it is neglected in the next rewrite of the term. 

Then, by factoring the common factor ej(^i/ßT)[(nm)-(kg)]^ we arrive at 

T6fc,o6„,oej(27r///3T)[("m)-(fc3)] 

Vi 
1 _ eJ{2rI/ßT)(k-n)maX(g,m)    ^       for fc ^ n (281) 

j[2*I(k-n)] 

Finally, after we factor out a T from both the Uk ^ uin and uik = u>n arguments to 

the summations, rearrange the summations for more logical programming, and use 

the fact that q = ßT, we arrive at the final form for Term #5. 

+M/2 +M/2 ßT-lßT-1 

Term #5 = 7lPT(l - pf      £ £     (M(Vo) £   £ P3+m * ¥>i    (282) 
fc=-M/2      n=-M/2 5=°   m=° 

where 

Vi = S 

eJ(2*I/ßT)[(nm)-(kg)] 

j[2irl(k-n)} 

0j[(2nkI/ßT)(m-g)] 1 

1 _ ei(27r///3T)(A:-n)max(s,m) 

max(g,m) 

/3T 

foxk^n 

for k = n 

The next applicable term is the first term ("cluster of summations") in Eq. 

(227), Appendix A. Utilizing L0 = 1, factoring a T, multiplying by 7£, and noting 

that q = ßT yields 

Term #6 = TlPTx 2(1 - /»)2(6b,o)(V-i) £   £ ^^-^-ii-i      (283) 
<j=0    m=l 

where 

G4{g,i = -l,m) 
r 

£T 
m </], for 5 < m 

0, otherwise 

Looking at the second term ("cluster of summations") in Eq. (227), Appendix 

A, and after utilizing L0 =  1, factoring a T, multiplying by 7£, and substituting 
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q = ßT, we have 

ßT-l 2/3T-1 

Term #7 = KPT x 2(1 - p)2(b0fi)(b0^) £    £   /+m 

5=0   m=/3T 
1 - —ma,x(g,m-ßT) 

(284) 

The next applicable term is the first term ("cluster of summations") in Eq. 

(228), Appendix A. Since <f>k = 0 

K,o = h,o (285) 

We can then work with the term inside of the summations 

¥7    =   P3+mbo,0bk,0- 
JUk 

eJvk(T-(m/ß)) _    juk((max(g,m)-m)/ß) 

+P9+mbo,oblQ] 

1 

l-JUk\ 

-jvk(T-(m/ß)) _     -juk((max(g,m)-m)/ß) (286) 

Then, since b*kQ = bkfi and after some rearranging, we have 

P9+mbo,obkfi 
9?7   =     :—- x • • • 

uk 

eJ"k(T-(m/ß)) _ e-jwk(T-{m/ß))   _eiujk((max(g,m)-m)/ß) _|_ e-jwk((ma.x(g,m)-m)/ß) 

A 

Then factoring a —1 from A yields 

'eJwfc((max(s,m)-m)//3) _ e~jujk((metx(g,m)—m)/ß)' 

A = 

Euler's Relationship defines 

Applying this relationship yields 

2p9+mb0,obkfi 

sinö = 

J 

eJ" - e-'b 

2j 

¥7 = 
Uk 

sm (u* I T - - 1 1 - sin U I ^  

(287) 

(288) 

(289) 

(290) 
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and since ujk — 2nkljT 

,pg+mb0i0bkio 
¥7=, 

' ßrkf 
T 

sin 2M V—Sr, sin 
2itkl 

ßT 
(ma,x(g,m) — m) (291) 

After factoring a T, multiplying by 11, utilizing q = ßT, and rearranging the summa- 

tions for more logical programming, we arrive at the expression for Term #8. 

+M/2     ßT-1 /3X-1 

Term#8 = ftPT(l-/>)2      £       EE^ 
k=-M/2    9=°   m=° 

where 

tp7 = 
P9+mbo,0bkfi 

irkl 
sin 2nkl   1 - 

m 
sm 

2irkl 

ßT 
(ma.x(g,m) — m) (292) 

The next applicable term ("cluster of summations") is Eq. (229) of Appendix 

A. Since <j>k = 0, we know bkfi = b*k0. Using L0 = 1, we can rework the argument of 

the summations. Making the appropriate parameter substitutions yields 

Vio =   ^+m60,_A,0— \^"^-m^ - l] G6(g, i = -1, m) 
111)!.      L J juk 

+/+mVi^,orn [e-**[k-"0/fl - l] G6(g,i = -l,m)       (293) 
-JUk 

Further symplifying yields 

9w - H  'G6(g,» = -l,m) 
pjWfc[(fl-ro)/0] _ .-ju;fc[(s-m)//?] 

2sin[wfc[(a-m)//3]] 

(294) 

Using ujk = 2irkI/T yields 

7y+m(&o,-i)(M 
¥>io = 

7T JbJ 
G6(g,i = -l,m)sin 

2ickl 

ßT {9-™) (295) 

Substituting <p10 inside of the summations, multiplying by 11, factoring T, using 

q = ßT, and rearranging the summations for logical programming yields the following 
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for Term #9. 
+ M/2 ßT-1 ßT-1 

Term#9 = ftPT(l-/>)2      £ EE^o 
k=-M/2 5=1  m=0 

k?a 

(296) 

where 

amd 

¥>io =  r? Gr
6(fl'^ = -l,m)sm 

irkl 

2irkl 

ßT 
{g-m) 

1, 
0, 

for m < g 
otherwise Ge(g,i = -l,m) = 

Look at the last applicable term ("cluster of summations"), Eq. (232), Appendix 

A. Again we take advantage of the fact that cf>k = 0, which means 6<.i0 = 6£ 0. Making 

the appropriate parameter substitutions yields 

^+m(6o,-i)(6fc,o) 1 
¥>13 

Bjvk[T-(m/ß)] _ p-Juk[T-(m/ß)} 

Uk J   l 

Jwk[(l/ß)max(g-ßT,m)-m/ß] _ e-ju,k[(l/ß)max(g-ßT,m)-m/ß] (297) 

Using Euler's Relationship we get 

7y+m(&o,-i)(^,o 
^13 

irkl 
sm 2KkI   1 

m 

ßT 
— sm 

2xA:7 
(max(g — ßT, m) — m) 

(298) 

Substituting c^ back inside of the summations, factoring a T, multiplying by 1Z, 

utilizing q = ßT, and rearranging the summations for logical programming yields 

+M/2      2ßT-lßT-l 

Term#10=nPT(l-p)2     £        E    E^ 
k=-M/2    °=ßT   m=° 

(299) 

where 

Vl3 = 
^+m(6o,_i)(6fc,o) 

7T JfcJ 
sin 2TT^7   1 

m 

0T 
sin 

lirkl 

ßT 
(max(<7 — /3T, m) — m) 
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For the given parameters L0 = I, L = 0, <^ = 0, and u>k = 2irkI/T, we have 

now derived all ten programmable terms of X where 

X = -R PTYQUOTi) + TZ PT(QUOT2) + ---+K PT(QUOT10) (300) 
< „ ' v ' „ ' 

Term #1 Term #2 Term #10 

We will use these ten programmable terms to compute probability of bit error for the 

dense WDM system. 
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APPENDIX C 

PROGRAMMING STRATEGY AND COMPUTER 
PROGRAMS FOR GENERATION OF PROBABILITY 

OF BIT ERROR GRAPHS 

In this appendix, we present the computer programs written to generate the proba- 

bility of bit error graphs for the system under consideration. We attempt to generate 

four graphs, one for each value of ßT considered. We reiterate that ß is the free 

spectral range of the Fabry-Perot filter (Hz) and that T is the data bit period (s). 

ßT is called the free spectral range-bit period product. The four values of ßT used 

are 

ßT = [500    1000    1500    2000] 

In each of the four graphs there will be five traces as we will present probability bit 

error for four values of the normalized channel spacing integer /, or equivalently the 

number of adjacent channels M, along with a probability of bit error trace for single 

channel (SC) operation without Fabry-Perot (FP) filtering or SC operation with FP 

filtering and without ISI or ACL We will show the relationship between I and the 

number of adjacent channels M later. Now, however, we present the four values of / 

corresponding to each value of ßT: 

For    ßT = 500 

/ = [4    5    8    20] 

For    ßT = 1000 

For    ßT = 1500 

I = [5    6    9    20] 

/ = [7   9    12    20] 
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For    ßT = 2000 

/ = [8    9    12    20] 

Without a lengthy discourse, we present the mathematical relationship between 

the normalized channel spacing integer / and the number of adjacent channels M 

M=A_i (301) 

For the special case /*. = kAf = kl/T we can easily see that A/ = I/T. Then 

BT 
M = ^—-l (302) 

For the values of / above M will not always be an even integer. Thus, an algorithm 

to consistently arrive at an even integer value of M which is less than or equal to the 

true mathematical value presented in Eq. (302) was devised. To get the number of 

adjacent channels, we perform the following operation 

BT 
tj- = Q + R (303) 

where Q is the integer quotient of the division operation and R is the remainder. To 

arrive at M we 

1. Subtract 1 from Q if Q is an odd integer and R — 0. 

2. Subtract 2 from Q if Q is an even integer and R — 0. 

3. Subtract 1 from Q if Q is an odd integer and R ^ 0. 

4. Subtract 2 from Q if Q is an even integer and R ^ 0. 

Using these rules, we obtain at the four values of M for each value of ßT. 

For   ßT = 500 

M = [124    ^98,     60      24 ] 
1=4        1=5        1=8        1=20 
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For    ßT = 1000 

For    ßT = 1500 

For    /?T = 2000 

M=[198 164 110 ^48j 
1=5 1=6 1=9 1=20 

M = [212 164 124 J74J 
1=7 1=9 1=12 1=20 

M= [248    220     164      98 ] 
/=8        1=9       1=12       1=20 

Now we use these four values of I and four values of M for each value of ßT 

to compute the four graphs of probability of bit error with five traces each. We will 

use the equations and methods developed in Appendix B to compute these graphs. 

Recall that 

X = K Pr(QUOTx) + Tl Pr(QUOT2) + • • • + ft PT(QUOT10) (304) 
> ^ '        - v ' * v ' 

Term #1 Term #2 Term #10 

Realizing this, we program the ten terms given in Appendix B in the following way: 

TERM #1 [Eq. (272)]: We will compute the QU01\ portion of this term four times, 

once for each value of ßT = 500, 1000, 1500, and 2000. We will use each 

of these four values in a separate program to compute the probability of 

bit error according to the equations developed in Appendix B. 

TERM #2 [Eq. (274)]: We will compute the QUOT2 portion of TERM #2 four times, 

once for each value of ßT = 500, 1000, 1500, and 2000. Each of these 

values will be used in a separate program to compute the probability of 

bit error according to the equations developed in Appendix B. 

TERM #3 [Eq. (276)]: We will compute the QUOT3 portion of TERM #3 four 

times, once each value of ßT = 500, 1000, 1500, and 2000. Each of these 

values will be used in a separate program to compute the probability of 

bit error according to the equations developed in Appendix B. 
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TERM #4 [Eq. (277)]: We will compute the QUOT4 portion of TERM #4 four times, 

once for each value of ßT = 500, 1000, 1500, and 2000. Each of these 

values will be used in a separate program to compute the probability of 

bit error according to the equations developed in Appendix B. 

TERM #5 [Eq. (282)]: We will compute the value of QUOT5 a total of 48 times, 12 

times for each value of ßT = 500, 1000, 1500, and 2000. For each value 

of ßT, we have the four corresponding values of the normalized channel 

spacing integer /, or equivalently, the number of adjacent channels M. 

We will compute the value of QUOT5 three times for each value of /. 

QUOT5 will be computed once for all M/2 of the lower adjacent channels 

being packed with Is and the upper adjacent channels being packed with 

0s. This is the case: {b~ — 1, b+ = 0). QUOT5 will be computed once for 

the lower adjacent channels being packed with 0s and the upper adjacent 

channels being packed with Is. This is the case: (b~ = 0, b+ = 1). Finally, 

we will compute QUOT5 once more for both the lower and upper adjacent 

channels being packed with l's. This is the case: (b~ = 1,6+ = 1). These 

twelve values of QUOT5 for each value of ßT will be used in each of the 

four separate bit error programs to compute each of the four multiple 

channel probability of bit error traces using the equations and methods 

developed in Appendix B. 

TERM #6 [Eq. (283)]: We will compute the QUOT6 portion of TERM #6 four times, 

once each for ßT = 500, 1000, 1500, and 2000. Each of the values will be 

used in separate to compute program probability of bit error according 

to the equations developed in Appendix B. 
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TERM #7 [Eq. (284)]: We will compute the QUOT7 portion of TERM #7 four times, 

once for each value of ßT = 500, 1000, 1500, and 2000. Each of these 

values will be used in a separate program to compute the probability of 

bit error according to the equations developed in Appendix B. 

TERM #8 [Eq. (292)]: We compute the value of QUOT8 twelve times for each 

value of ßT. These twelve values of QUOT8 for each value of ßT will be 

used in each of the four separate bit error graphing programs to compute 

each of the four multiple channel probability of bit error traces using the 

equations and methods developed in Appendix B. 

TERM #9 [Eq. (296)]: We compute the value of QUOT9 twelve times for each 

value of ßT. These twelve values of QUOT9 for each value of ßT will be 

used in each of the four separate bit error graphing programs to compute 

each of the four multiple channel probability of bit error traces using the 

equations and methods developed in Appendix B. 

TERM #10 [Eq.   (299)]:  We compute the value of QUOT10 twelve times for each 

value of ßT. These twelve values of QUOT10 for each value of ßT will be 

used in each of the four separate bit error graphing programs to compute 

each of the four multiple channel probability of bit error traces using the 

equations and methods developed in Appendix B. 

Note:    When we say we are computing QUOT^, we are not being exactly mathemat- 

ically correct, as we compute each of these terms without the bit values b0<0 and/or 

b0 _i the factor (1 — p)2. These are accounted for in the final programs. For example 

Term #1 = KPT {I - P)X,o"E   EV™ (l - (^f1)) (305) 

■ „ ' 
QUOTj 

125 



However, the computer program for Term #1 (QUOTJ only computes 

!!>HT)) 
four times for ßT = 500, 1000, 1500, 2000. (1 - pf and the value of (60,o)2 are 

accounted for in the final programs which utilize the equations and methods developed 

in Appendix B. The author apologizes for the slight stretch of the truth, but it seemed 

necessary to succinctly explain the general method of computing each of the ten terms, 

and the final graphs. 

For completness we also present the probability of bit error equation for a single 

channel operation 

Pb = Q (^) (307) 

where we recall [Eq. (271), Appendix B] that 

%PT [~T~ z=vm=nph. <308> 
and 

1     c°°      ■> Q{x) = 7^L e~    y (309) 

The computer programs for each of the ten terms, the numerical results, and the final 

graph are now presented. 
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y. THESIS COMPUTER WORK 
y.   
y. i i 
•/,                    I TERM #1 | 
y. I I 
y. 
y. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE THE FOUR VALUES OF 
•/, TERM #1 AND TO WRITE THESE VALUES TO DIARY FILE FOR LATER 
•/, USE/MANIPULATION IN CALCULATING THE DETECTION STATISTIC 
•/. AND THE PROBABILITIES OF BIT ERROR 
y. 
y. 
•/.       JOHN A.   STUDER DATE LAST MODIFIED:   11  SEP 94 
'/.       CPT,   U.S ARMY 
•/.       550-53-7181 
•/ •/ •/ •/ •/ •/ •/ •/ •/ v •/ •/ •/ •/ «i 

rho = 0.99; 
betatau = [500 1000 1500 2000]; 
for i = 1:4 

termlsum(i)= 0; 
for g = 1 :betatau(i) 

for m = l:betatau(i) 
termlsum(i) = termlsum(i) + (rlio. ~ ((g-l) + (m-l))* . . . 

(l-(max([g-l m-l]')/betatau(i)))); 
end 

end 
end 
diary johnmanl.txt 
diary on 
termlsum 
diary off 
end 
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termlsum = 

l.Oe+03 * 

7.0510   8.5126 9.0083 9.2563 '/, numbers/arrows/words 
'/, below added after matlab 
'/.  dumped answers to file using 
'/, the diary command 

500 1000 1500 2000 betatau values 

'/, The numbers displayed above are the computed values of 
'/, Term #1 for the four values of betatau given above. 
'/, These values will be used later in other programs to compute detection 
'/, statistics and the probabilities of bit error for various signal to noise 
'/, ratios. 

I I 
I  TERM #1   I 
I. I 
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vvvvvvvvt/i/vvvvvvvo/vvvvvy^/ty^ 
THESIS COMPUTER WORK 

I I 
I  TERM #2 | 
I I 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE THE FOUR VALUES 
OF TERM #2 CORRESPONDING TO THE FOUR VALUES OF 
betatau: 500,1000,1500,2000. WE WILL USE BACKGROUND 
PROCESSING TO WRITE THESE FOUR VALUES TO AN OUTPUT 
FILE CALLED term2.out. WE WILL USE THESE FOUR OUTPUT 
VALUES FOR TERM #2 TO LATER, IN ANOTHER PROGRAM 
COMPUTE THE DETECTION STATISTICS AND PROBABILITIES 
OF BIT ERROR FOR THE VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER DATE LAST MODIFIED: 11 SEP 94 
CPT, U.S. ARMY 

I.    550-53-7181 

rho = 0.99; 
betatau = [500 1000 1500 2000]; 
for i = 1:4 

term2sum(i) = 0; 
for g = 1:betatau(i)-l 

for m = 1: betatau(i)-l 
term2sum(i) = term2sum(i) + ((rho~(g+m))*min(g,m)); 

end 
end 
term2sumfinal(i) = term2sum(i)/betatau(i); 

end 
term2sumfinal 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-94 The MathWorks, Inc. 

All Rights Reserved 
Version 4.2 
Mar 29 1994 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

term2sumfinal = 

959.5662 492.4271  328.3413  246.2563 

y. 
•/. 
y. 
•/. 

500 1000     1500 

betatau values-- 

2000 

*/, The numbers/arrows/words 
'/, below were added after 
'/, the matlab background job 
'/, dumped the values to the 
'/, file term2.out 
7, All values/text not done by 
'/, Sun Stn is preceded by a "'/," 

29965020 flops. 

/e /t /o /• /« 1% /o /• U U in U h /t /• 

y. y. 
y.     TERM #2     y. 
y. y. 
nnnvannn 
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vvvvvvvvvvvvvvvvvvvvvvy^^yj^y^^ 
THESIS 'COMPUTER WORK 

I I 
I   TERM #3    I 
I I 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE THE FOUR VALUES OF 
TERM #3 CORRESPONDING TO THE FOUR VALUES OF 
betatau: 500,1000,1500,2000. WE WILL USE BACKGROUND 
PROCESSING TO COMPUTE THE VALUES AND WRITE THESE FOUR 
VALUES TO A FILE CALLED term3.out. WE WILL USE THESE 
FOUR VALUES FOR TERM #3 TO LATER, IN ANOTHER PROGRAM 
COMPUTE THE DETECTION STATISTICS AND PROBABILITIES OF 
BIT ERROR FOR THE VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER DATE LAST MODIFIED: 12 SEP 1994 
CPT, U.S. ARMY 
550-53-7181 

format short e 
rho = 0.99; 
betatau =   [500  1000  1500 2000]; 
for i = 1:4 

term3sum(i)   = 0; 
for g =  l:betatau(i)-l 

for m = betatau(i):((2*betatau(i))-l) 
if m-betatau(i) < g 

term3sum(i) = term3sum(i) + ((rho~(g+m))*(g-(m-betatau(i)))); 
end 

end 
end 

term3sumfinal(i) = (2*term3sum(i))/betatau(i); 
end 
term3sumfinal 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

term3sumfinal 

1.2211e+01 4.2917e-02  1.8815e-04 

7. 
7. 
7. 
7. 
7. 

500 1000 1500 

betatau values 

'/, Numbers/arrows/words 
7. below were added after 

9.2720e-07 7. the matlab background 
'/.  job dumped the values 
7. to the file term3.out 

2000   7. All values/text not 
'/,  done by Sun Stn. is 
7. preceded by a "'/,". 

yx/x/x/x/x/x/x/. 
7. 

TERM #3  7. 
7. 

v/xixixixixix/x 

29990004 flops. 
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y:i:/:ix/:/:i:i:i:m^^ 
THESIS COMPUTER WORK 

1 
I       TERM 
1 . 

1 
#4          | 

._       __l 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE THE FOUR VALUES 
OF TERM #4 CORRESPONDING TO THE FOUR VALUES OF 
betatau: 500,1000,1500,2000. WE WILL USE BACKGROUND 
PROCESSING TO WRITE THESE FOUR VALUES TO AN OUTPUT 
FILE CALLED term4.out. WE WILL USE THESE FOUR OUTPUT 
VALUES FOR TERM #4 TO LATER , IN ANOTHER PROGRAM 
COMPUTE THE DETECTION STATISTICS AND PROBABILITIES 
OF BIT ERROR FOR THE VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER DATE LAST MODIFIED: 13 SEP 94 
CPT, U.S. ARMY 

t.    550-53-7181 
././t/Vt/VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVW^^ 

format  short e 
rho = 0.99; 
betatau =   [500  1000  1500 2000]; 
for i =  1:4 

term4sum(i)  = 0; 
for g = betatau(i):((2*betatau(i))-l) 

for m = betatau(i):((2*betatau(i))-l) 
term4sum(i)   = term4sum(i)   +  ((rho"(g+m))*... 

(l-(max(g-betatau(i),m-betatau(i))/betatau(i)))); 
end 

end 
term4sumfinal(i) = term4sum(i); 

end 
term4sumfinal 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-94 The MathWorks, Inc. 

All Rights Reserved 
Version 4.2 
Mar 29 1994 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

term4sumfinal 

3.0440e-01 1.5865e-05  7.2482e-10  3.2152e-14 

7. 
7. 
y. 
•/. 
•/. 

500 1000 1500 

betatau values 

2000 

'/, Numbers/arrows/words 
'/, below were added after 
'/, the matlab bkgd job 
'/, dumped the values to 
'/, the file term4.out 
'/, All values/text not 
'/, done by Sun Stn is 
'/. preceded by a "'/,". 

•/. •/. 
'/.  TERM #4   '/. 
y. y. 
n%nnm:i:i:mx 

60010008 flops. 

134 



'/, THESIS COMPUTER WORK 
*/. 
'/. 
7. 
7.   
7. I I 
•/, I TERM #5 I 
'/, I       betatau = 500       I 
'/. I I 
'/. 
'/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #5 
'/, FOR THE VALUE OF betatau = 500. WE WILL COMPUTE 
•/, FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
•/. betatau = 500 are I = [4 5 8 20] . WE WILL COMPUTE THE VALUE OF 
•/, TERM #5 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
•/, ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
•/, BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
•/, WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
'/. ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
•/, (have a positive summation index) BEING PACKED WITH l'S. THIS 
•/. IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
•/. LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
•/, (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
•/, DUMP ALL TWELVE VALUES TO A FILE CALLED term5500.mat 
•/, SINCE THE FILE IS IN BINARY FORMAT WE WILL USE MATLAB 
X INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE 
'/. READABLE HARDCOPY RESULTS. AFTER THIS IS ALL DONE, WE WILL 
•/, USE THESE VALUES LATER , IN ANOTHER PROGRAM TO COMPUTE THE 
•/. DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
'/, VARIOUS SIGNAL TO NOISE RATIOS. 
'/. 
7.     JOHN A. STUDER DATE LAST MODIFIED: 22 OCT 94 
*/. CPT, U.S. ARMY 
*/.     550-53-7181 
•/•/vo/./vvvvvvvvvvvvvvvvvvvvvvvvvvvvVVVVVVVVVVVVVVVVVVVVVVVVV.V.Vy.V.V//V.V//y//////V//////////// 

format short e 
rho = 0.99; 
betatau = 500; 
I = [4 5 8 20] ; 
M = [124 98 60 24]; 
g = 0:(betatau-1); 
m = 0:(betatau-1); 
row = rho."g; 
col = rho.~m; 
rhomatrix = col'*row; 
rowprime = g(ones(betatau,1),:); 
colprime = rowprime'; 
WO = max(rowprime,colprime); 
C = WO/betatau; 
ONEMINUSMAX = 1-C; 
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A = colprime-rowprime;   '/, m-g for later complex exponential 
for i = 1:4 

bitmatrix = [-M(i)/2:-l zeros(l,M(i)/2);zeros(l,M(i)/2) l:M(i)/2;... 
-M(i)/2:-l  l:M(i)/2]; 

const  =   ((2*pi*I(i))/betatau); 
for bitpat  =  1:3 

term5sum(i,bitpat)   = 0; 
work = bitmatrix(bitpat,:); 
m = work==0; 
work(m) = [] ; 
k = work; 
n = k; 
for kct =  1:length(k) 

for net =  l:length(n) 
if kct  == net 

B = j*((2*pi*k(kct)*I(i)*A)/betatau); 
D = exp(B); 
term5sum(i,bitpat) = term5sum(i,bitpat)+... 

sum(sum(rhomatrix.*D.*0NEMINUSMAX)); 
else 

El = exp(j*const*((n(nct)*colprime)-(k(kct)*rowprime))) ;'/,'/,'/,'/. 
E2 = l-exp(j*const*(k(kct)-n(nct))*WG); 
term5sum(i,bitpat) = term5sum(i,bitpat) +... 
sum(sum((rhomatrix.*E1.*E2)/(j *2*pi*I(i)*(k(kct)-n(nct))))); 

end 
end 

end 
end 

end 
save term5500 term5sum 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

>> load term5500.mat 
>> who 

Your variables are: 

term5sum 

>> term5sum 

term5sum = 

1.0e+03 * 

1.5423 - O.OOOOi 
0.9419 - O.OOOOi 
0.3307 - O.OOOOi 
0.0431 - O.OOOOi 

1.5423 + O.OOOOi 
0.9419 + O.OOOOi 
0.3307 + O.OOOOi 
0.0431 + O.OOOOi 

1.3825 + O.OOOOi '/. I = 4 
0.9001 - O.OOOOi '/. I = 5 
0.3576 + O.OOOOi '/. I = 8 
0.0580 - O.OOOOi '/. I = 20 

» 

'/. CASE: (b-=l,b+=0)  CASE: (b-=0,b+=l)  CASE: (b-=l,b+=l) 

nnmnnnrnm 
'/. TERM #5 '/. 
'/. betatau = 500 */, 
,/.,/.,/.,/.,/.,/.,/.•/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/. 

NOTE: THIS IS THE FILE term5500.out CREATED FROM THE 
BINARY FILE term5500.mat USING MATLAB INTERACTIVE COMMANDS. 
ALL TEXT PRECEDED BY A '/. WAS ADDED LATER USING A 
TEXT EDITOR. 
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vi:i:m:m:i:i:im^ 
7. THESIS COMPUTER WORK 
'/. 
'/. 
'/.   
7. I I 
'/.                    I   TERM #6   | 
'/. I I 
'/. 
'/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE THE FOUR VALUES OF 
*/. TERM #6 CORRESPONDING TO THE FOUR VALUES OF betatau WHICH ARE: 
7. 500,1000,1500,2000. WE WILL USE BACKGROUND PROCESSING TO 
'/. COMPUTE THE VALUES AND WRITE THESE FOUR VALUES TO A FILE 
'/. CALLED term6.out. WE WILL USE THESE FOUR VALUES FOR TERM #6 
'/. TO LATER, IN ANOTHER PROGRAM COMPUTE THE DETECTION STATISTICS 
'/. AND PROBABILITIES OF BIT ERROR FOR THE VARIOUS SIGNAL TO 
*/. NOISE RATIOS. 
'/. 
'/. JOHN A. STUDER DATE LAST MODIFIED: 16 SEP 94 
*/. CPT, U.S. ARMY 
'/.  550-53-7181 
V V V V V V V V V •/ V V V V V V V V V V V V V V V V V V V V •/ V V V V V V V V •/ •/ V V V V V •/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ •/ V •/ V •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ v •/ •/ 

format short e 
rho = 0.99; 
betatau = [500 1000 1500 2000]; 
for i = 1:4 

term6sum(i) = 0; 
for g = l:betatau(i) 

for m = l:betatau(i)-l 
if (g-1) < m 

term6sum(i) = term6sum(i) + ((rho"((g-l)+m))*(m-(g-l))); 
end 

end 
end 

term6sumfinal(i) = (2*term6sum(i))/betatau(i); 
end 
term6sumfinal 
exit 
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<MATLAB(R)> 
(c) Copyright 1984-94 The MathWorks, Inc. 

All Rights Reserved 
Version 4.2 
Mar 29 1994 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

term6sumfinal 

1.8585e+03 9.9411e+02  6.6331e+02  4.9749e+02 

y. 

500 1000       1500 

•- betatau values ■ 

2000 

'/, Numbers/arrows/words 
'/, below were added after 
*/, the matlab bkgd job 
°/, dumped the values to 
'/, the file term6.out 
'/, All values/text not 
'/, done by Sun Stn is 
y, preceded by a "'/."• 

n%nnm:m:i:L 
y. 

TERM #6  '/. 
y. 

y.y.y.y.y.y.y.y.y.y.y.y.y.y.y. 

33732508 flops. 
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yx/x/x/x/x/.myx/x/x/jxm 
'/. THESIS COMPUTER WORK 
'/. 
'/. 
'/.   
'/.                       I I 
'/.                     I   TERM #7    | 
*/. I I 
'/. 
7,    COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE THE FOUR VALUES OF 
'/. TERM #7 CORRESPONDING TO THE FOUR VALUES OF betatau WHICH ARE 
'/. 500,1000,1500,2000. WE WILL USE BACKGROUND PROCESSING TO COMPUTE 
'/. THE VALUES AND WRITE THESE FOUR VALUES TO A FILE CALLED 
*/. term7.out. WE WILL USE THESE FOUR VALUES FOR TERM #7 TO 
*/. LATER, IN ANOTHER PROGRAM COMPUTE THE DETECTION STATISTICS 
'/. AND PROBABILITIES OF BIT ERROR FOR THE VARIOUS SIGNAL TO 
'/. NOISE RATIOS. 
'/. 
7,     JOHN A. STUDER DATE LAST MODIFIED: 16 SEP 94 
7.    CPT, U.S. ARMY 
'/. 550-532-7181 
•/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ «/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V V •/ •/ •/ •/ •/ •/ •/ V •/ •/ V V»/ •/ •/ V V •/ •/ •/ V V •/ •/ •/ •/ V V •/ •/ •/ •/ •/ •/ •/ V •/ •/ '/ •/ •/ •/ •/ •/ V •/ V •/ V V »i 

format short e 
rho = 0.99; 
betatau = [500 1000 1500 2000]; 
for i = 1:4 

term7sum(i) = 0; 
for g = l:betatau(i) 

for m = betatau(i):((2*betatau(i))-l) 
term7sum(i) = term7sum(i) + ... 

((rho"((g-l)+m))*(l-(max(g-l,m-betatau(i))/betatau(i)))); 
end 

end 
term7sumf inal(i) = 2*term7siim(i); 
end 
term7sumfinal 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-94 The MathWorks, Inc. 

All Rights Reserved 
Version 4.2 
Mar 29 1994 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

m7sumfinal : 

9.2657e+01 7 

'/. 500 
'/. 
•/. 
7.     

7.3500e-01  5.1105e-03  3.4503e-05 

1000 1500 2000 

betatau values 

'/, Numbers/arrows/words 
'/, below were added after 
'/„ the matlab bkgd job 
'/, dumped the values to 
*/, the file term7.out 
'/, All values/text not 
'/, done by Sun Stn is 
'/, preceded by a "'/.". 

67510004 flops. 

,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/. 

•/. •/. 
'/,  TERM #7  '/. 
y. •/. 
y.y.y.y.y.y.y.y.y.y.y.y.y.y.y. 
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•/ •/ V •/ •/ •/ V •/ •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V V V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V V •/ •/«/ •/ •/ •/«/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ «i 

1 
1     TERM 
1  betatau 
l__  _  _. 

1 
#8     | 
= 500   | 

. __  __l 

'/. THESIS COMPUTER WORK 
*/. 
'/. 
'/. 
'/. 
'/. 
'/. 
'/. 
•/. 
'/. 
'/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #8 
'/. FOR THE VALUE OF betatau = 500. WE WILL COMPUTE 
'/. FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
'/. betatau = 500 are I = [4 5 8 20] . WE WILL COMPUTE THE VALUE OF 
A TERM #8 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
*/. ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
'/. BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
'/. WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
'/. ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
'/. (have a positive summation index) BEING PACKED WITH l'S. THIS 
7. IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
*/. LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
*/. (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
'/. DUMP ALL TWELVE VALUES TO A FILE CALLED term8500 .out. WE WILL 
'/. USE THESE VALUES LATER , IN ANOTHER PROGRAM TO COMPUTE THE 
*/. DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
'/. VARIOUS SIGNAL TO NOISE RATIOS. 
y. 
•/, JOHN A. STUDER                  DATE LAST MODIFIED: 26 SEP 94 
•/, CPT, U.S. ARMY 
•/. 550-53-7181 
•/ V •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V V V V •/ •/ V •/ •/ V •/ •/ •/ •/ V •/'/ •/ •/ •/ •/'/ '/ •/ •/ •/ •/ •/'/ *i 

format  short  e 
rho = 0.99; 
betatau = 500; 
I  =   [4 5  8  20] ; 
M =   [124 98 60 24]; 
for i =  1:4 

k =   [-M(i)/2:-l   l:M(i)/2]; 
term8sum500(i)   = 0; 
for ct =  l:M(i) 

for g =  1:betatau 
for m =  1:betatau 

term8sum500(i)  = term8sum500(i)   +  ((rho"((g-l)+(m-l)))/... 
(pi*k(ct)*I(i)))*(sin(2*pi*k(ct)*I(i)*... 
(l-((m-l)/betatau)))-sin(((2*pi*k(ct)*I(i))/. 
betatau)*(max(g-l,m-l)-(m-l)))); 

end 
end 
if  ct == M(i)/2 
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term85001eft(i) = term8sum500(i); 
end 

end 
term85001r(i) = term8sum500(i); 
term8500right(i) = term85001r(i)-term85001eft(i); 

end 
term85001eft 
term8500right 
term85001r 
exit 
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<MATLAB(R)> 
(c)   Copyright  1984-94 The MathWorks,   Inc. 

All Rights Reserved 
Version 4.2 
Mar 29 1994 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

term85001eft = 

-3.7098e+02  -2.3852e+02  -9.2820e+01  -1.4109e+01 7.  CASE: (b-=l,b+=0) 

term8500right = 

-3.7098e+02  -2.3852e+02  -9.2820e+01  -1.4109e+01 7.  CASE: (b-=0,b+=l) 

term85001r = 

-7.4196e+02 -4.7703e+02 -1.8564e+02 -2.8217e+01 '/,  CASE: (b-=l,b+=l) 

'/. 
7.         1 = 4       1 = 5       1 = 8       1 = 20 
y,     
*/. 
'/.  VALUES OF NORMALIZED CHANNEL SPACING INTEGER I 

'/.    TERM #8     */. 
*/. betatau = 500  */. 
nnunnnnnnn 

NOTE: ALL TEXT PRECEDED BY A 7.  WAS ADDED 
BY A TEXT EDITOR AFTER THE BACKGROUND 
JOB CREATED THE FILE term8500.out. 

2142000318 flops. 
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THESIS COMPUTER WORK 

TERM #8 
betatau = 1000 

I. 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #8 
FOR THE VALUE OF betatau = 1000. WE WILL COMPUTE 
FOR THE FOUR VALUES OF I (AN INTEGER). THE VALUES OF I FOR 
betatau = 1000 are I = [5 6 9 20]. WE WILL COMPUTE THE VALUE OF 
TERM #8 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
(have a positive summation index) BEING PACKED WITH l'S. THIS 
IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
(b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
DUMP ALL TWELVE VALUES TO A FILE CALLED term81k.mat 
SINCE THE FILE IS IN A BINARY FORMAT WE WILL THEN USE 
MATLAB INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE 
READABLE HARDCOPY RESULTS. AFTER THIS IS DONE, WE WILL 
USE THESE VALUES LATER , IN ANOTHER PROGRAM TO COMPUTE THE 
DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER 
CPT, U.S. ARMY 

DATE LAST MODIFIED: 27 SEP 94 

550-53-7181 
v •/ •/ v •/ •/ •/ •/ •/ •/ •/ >/ •/ •/ v •/ •/ •/•/•/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ v •/ •/ •/ v •/ •/ v •/ •/ v •/ v v v •/ v •/ v v v v'/ v v v'/ v •/ •/ v v'/ •/ •/ •/ v. •/ •/ •/. •/ •/. •/. •/. 

format short e 
rho = 0.99; 
betatau =  1000; 
I  =   [5  6  9  20] ; 
M = [198 164 110 48]; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
term8sum(i) = 0; 
for ct = l:M(i) 

for g =  1:betatau 
for m =  1:betatau 

term8sum(i)  = term8sum(i)  +   ((rho~((g-l)+(m-l)))/... 
(pi*k(ct)*I(i)))*(sin(2*pi*k(ct)*I(i)*... 
(l-((m-l)/betatau)))-sin(((2*pi*k(ct)*I(i))/. 
betatau)*(max(g-l,m-l)-(m-l)))); 
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end 
end 
if ct == M(i)/2 

term81kleft(i) = term8sum(i); 
end 

end 
term81klr(i) = term8sum(i); 
term81kright(i) = term81klr(i)-term81kleft(i); 

end 
save term81k term81kleft term81kright term81klr 
exit 
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< M A T L A B (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

» load term81k 
>> who 

Your variables are: 

term81kleft   term81klr     term81kright 

» term81kleft 

term81kleft = 

-464.3344 -327.7899 -148.2912  -29.7545   '/. CASE: (b-=l,b+=0) 

» term81kright 

term81kright = 

-464.3344 -327.7899 -148.2912  -29.7545   */. CASE: (b-=0,b+=l) 

» term81klr 

term81klr = 

-928.6688 -655.5798 -296.5824 -59.5090   */. CASE: (b-=l,b+=l) 

» 
7. 
'/.  1 = 5    1 = 6    1 = 9    1 = 20 
'/.         
'/. 
'/. VALUES OF THE NORMALIZED CHANNEL SPACING INTEGER I 

mnwnumnn 
'/. TERM #8    '/. 
'/. betatau = 1000 '/. 
m:i:iimxm:i:i:i:i:i. 

NOTE: THIS IS THE FILE term81k.out CREATED FROM THE 
BINARY FILE term81k.mat USING MATLAB INTERACTIVE 
COMMANDS. ALL TEXT PRECEDED BY A '/. WAS ADDED LATER 
USING A TEXT EDITOR. 
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•/ V •/ •/ •/ •/ •/ •/ •/ •/ >l •/ V •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/«/ •/ •/ •/ •/«/ •/«/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/»/ V V •/ •/ •/ •/ •/ •/ •/«/ •/ 0/ 0/ •/«/ •/ »/ •/ 0/ 0/ •/ v «, mm 
y. 
•/. 
•/. 
•/. 
'/. 
•/. 
•/. 
•/. 
•/. 
•/. 
•/. 
y. 
•/, 
•/. 
•/. 
•/. 
•/. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 

THESIS COMPUTER WORK 

FOR THE 
betatau 
TERM #8 
ALL M/2 

I TERM #8 I 
I betatau = 1500 I 
I I 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #8 
FOR THE VALUE OF betatau = 1500. WE WILL COMPUTE 

FOUR VALUES OF I (AN INTEGER). THE VALUES OF I FOR 
= 1500 are I = [7 9 12 20]. WE WILL COMPUTE THE VALUE OF 
THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
OF THE LOWER ACI CHANNELS (have negative summation index) 

BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
(have a positive summation index) BEING PACKED WITH l'S. THIS 
IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
(b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
DUMP ALL TWELVE VALUES TO A FILE CALLED term815k.out WE WILL 
USE THESE VALUES LATER, IN ANOTHER PROGRAM TO COMPUTE THE 
DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER 
CPT, U.S. ARMY 
550-53-7181 

DATE LAST MODIFIED: 27 SEP 94 

V V V •/ V V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V V •/ •/ V •/ •/ •/ •/ •/ •/ V V V V •/ •/ V V •/ •/ •/ •/ •/ •/ •/ •/ V V V •/ V V •/ V V •/ V V •/ V •/ V V «i 

format short e 
rho = 0.99; 
betatau = 1500; 
I = [7 9 12 20]; 
M = [212 164 124 74]; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
term8sum(i) = 0; 
for ct = l:M(i) 

for g =  1:betatau 
for m =  1:betatau 

term8sum(i)  = term8sum(i)   +  ((rho"((g-l)+(m-l)))/... 
(pi*k(ct)*I(i)))*(sin(2*pi*k(ct)*I(i)*... 
(1-((m-1)/betatau)))-sin(((2*pi*k(ct)*I(i))/ . 
betatau)*(max(g-l,m-l)-(m-l)))); 

end 
end 
if  ct == M(i)/2 
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term815kleft(i) = term8sum(i); 
end 

end 
term815klr(i) = term8sum(i); 
term815kright(i) = term815klr(i)-term815kleft(i); 

end 
term815kleft 
term815kright 
term815klr 
exit 
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^ 

<MATLAB (R) > 
(c) Copyright 1984-94 The MathWorks, 

All Rights Reserved 
Version 4.2 
Mar 29 1994 

Inc. 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

malloc count matches malloc_debug_count 
malloc count matches malloc_debug_count 
malloc count matches malloc_debug_count 
malloc count matches malloc_debug_count 
malloc count matches malloc_debug_count 
malloc count matches malloc_debug_count 

term815kleft = 

-3.5253e+02 -2.1854e+02 -1.2475e+02 -4.5096e+01 '/. CASE: (b- =l,b+= =0) 

term815kright = 

-3.5253e+02  -2.1854e+02  -1.2475e+02  -4.5096e+01 '/. CASE: (b- =0,b+= = 1) 

term815klr = 

-7.0505e+02  -4.3708e+02 -2.4950e+02  -9.0192e+01 '/. CASE: (b- =l,b+= = 1) 

'/. 
*/.   1 = 7        1 = 9       I = 12      I = 20 
'/.         

'/.  VALUES OF NORMALIZED CHANNEL SPACING INTEGER I 

mm:mmnmy. 
7,         TERM #8    '/. 
'/. betatau = 1500 '/. 
nmx/xm.'/:/:/:an 

NOTE: THIS IS THE FILE term815k.out. ALL TEXT 
PRECEDED BY A '/. WAS ADDED LATER USING A 
TEXT EDITOR. 

36162000586 flops. 
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y:i:ixwixi:i:i:im^^^ 
'/, THESIS COMPUTER WORK 
'/. 
'/. 
'/. 
'/.   
'/. I                  I 
'/, I     TERM #8     I 
'/, I   betatau = 2000  I 
y. i i 
•/. 
7. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #8 
'/. FOR THE VALUE OF betatau = 2000. WE WILL COMPUTE 
•/, FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
•/. betatau = 2000 are I = [8 9 12 20] . WE WILL COMPUTE THE VALUE OF 
'/. TERM #8 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
•/ ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
•/ BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
'/, WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
'/, ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
% (have a positive summation index) BEING PACKED WITH l'S. THIS 
•/, IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
•/. LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
•/, (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
'/, DUMP ALL TWELVE VALUES TO A FILE CALLED term82k.mat. WE WILL 
•/, THEN SINCE THE FILE IS IN BINARY FORMAT USE MATLAB INTERACTIVE 
•/. COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE HARDCOPY 
•/. RESULTS. WE WILL USE THESE VALUES LATER, IN ANOTHER PROGRAM 
% TO COMPUTE THE DETECTION STATISTICS AND PROBABILITIES OF 
*/. BIT ERROR FOR THE VARIOUS SIGNAL TO NOISE RATIOS. 
% 
'/. JOHN A. STUDER                  DATE LAST MODIFIED: 27 SEP 94 
% CPT, U.S. ARMY 
•/. 550-53-7181 

./././ o/ ./•/«/•/•/•/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ V V V V V V •/ V V V V V V V V V V V V V V V V V V V V V V V V V V •/ V V. V. V. V. V. V. V.'/. V. 

format  short  e 
rho =  0.99; 
betatau = 2000; 
I =   [8 9  12 20]; 
M = [248 220 164 98]; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
term8sum(i) = 0; 
for ct = l:M(i) 

for g =  1:betatau 
for m =  1:betatau 

term8sum(i)  = term8sum(i)  +  ((rho~((g-l)+(m-l)))/... 
(pi*k(ct)*I(i)))*(sin(2*pi*k(ct)*I(i)*. .. 
(l-((m-l)/betatau)))-sin(((2*pi*k(ct)*I(i))/. 
betatau)*(max(g-l,m-l)-(m-l)))); 

end 
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end 
if et == M(i)/2 

term82kleft(i) = term8sum(i); 
end 

end 
term82klr(i) = term8sum(i); 
term82kright(i) = term82klr(i)-term82kleft(i); 

end 
save term82k term82kleft term82kright term82klr 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

>> load term82k.mat 
>> who 

term82kright 

Your variables are: 

term82kleft   term82klr 

» term82kleft 

term82kleft = 

-351.8931 -283.0055 -163.9044 -60.1542 

» term82kright 

term82kright = 

-351.8931 -283.0055 -163.9044 -60.1542 

» term82klr 

term82klr = 

-703.7863 -566.0110 -327.8088 -120.3084 

1 = 8     1 = 9   1 = 12   1 = 20 

'/. CASE: (b-=l,b+=0) 

•/. CASE: (b-=0,b+=l) 

'/. CASE: (b-=l,b+=l) 

VALUES OF THE NORMALIZED CHANNEL SPACING INTEGER I 

nmnmnxnm 
'/.   TERM #8    •/. 
'/. betatau = 2000 '/. 
nnununwxn 

NOTE: THIS IS THE FILE term82k.out CREATED FROM THE 
BINARY FILE term82k.mat USING MATLAB INTERACTIVE 
COMMANDS. ALL TEXT PRECEDED BY A '/. WAS ADDED LATER 
USING A TEXT EDITOR. 
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mmy.mmyx/x/.mmmy.OTm 
'/. THESIS  COMPUTER WORK 
y. 
•/. 
y. 
y.   
y. i i 
'/.                                                         I             TERM #9 | 
'/.                                                         I       betatau = 500       j 
y. I I 
y. 
'/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #9 
•/. FOR THE VALUE OF betatau = 500. WE WILL COMPUTE 
'/. FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
'/. betatau = 500 are I = [4 5 8 20] . WE WILL COMPUTE THE VALUE OF 
'/. TERM #9 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
•/. ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
'/. BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
•/. WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
'/. ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
•/. (have a positive summation index) BEING PACKED WITH l'S. THIS 
•/. IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
'/. LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
•/. (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
*/. DUMP ALL TWELVE VALUES TO A FILE CALLED term9500 .mat. 
•/. SINCE THE FILE IS IN A BINARY FORMAT WE WILL USE MATLAB 
•/. INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
•/. HARDCOPY RESULTS. AFTER THIS IS ALL DONE WE WILL 
'/. USE THESE VALUES LATER, IN ANOTHER PROGRAM TO COMPUTE THE 
'/. DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
•/. VARIOUS SIGNAL TO NOISE RATIOS. 
y. 
'/.  JOHN A. STUDER DATE LAST MODIFIED: 28 SEP 94 
•/. CPT, U.S. ARMY 
•/. 550-53-7181 
y.yx/.yx/////.yx/x/.yx/.yx/x/xm 
format  short  e 
rho = 0.99; 
betatau = 500; 
I  =   [4 5  8  20] ; 
M =   [124  98 60  24]; 
for i =  1:4 

k =   [-M(i)/2:-l  l:M(i)/2]; 
term9sum(i)   = 0; 
for ct =  l:M(i) 

for g =  l:betatau-l 
for m =  1:betatau 

if i-l <    g 
term9sum(i)   = term9sum(i)  +   ((rho"(g+(m-l)))/(pi*k(ct)... 

*I(i)))*sin(2*pi*k(ct)*I(i)*((g-(m-l))... 
/betatau)); 
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end 
end 

end 
if ct == M(i)/2 

term95001eft(i) = term9sum(i); 
end 

end 
term95001r(i) = term9sum(i); 
term9500right(i) = term95001r(i)-term95001eft(i); 

end 
save term9500 term95001eft term9500right term95001r 
exit 
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<108 sp254201(SunOS) /kepler_u2/studer> matlab 

<MATLAB(R)> 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

>> load term9500.mat 
>> who 

Your variables are: 

term95001eft 
term95001r 

term9500right 

» term95001eft 

term95001eft = 

125.1608  80.4704  31.3156   4.7599   '/. CASE: (b-=l,b+=0) 

» term9500right 

term9500right = 

125.1608  80.4704  31.3156   4.7599   '/. CASE: (b-=0,b+=l) 

» term95001r 

term95001r = 

250.3216  160.9408  62.6313   9.5199   '/. CASE: (b-=l,b+=l) 

» 

7,       1=4    1 = 5    1 = 8     1 = 20 
7.         
'/. 
'/. VALUES OF NORMALIZED CHANNEL SPACING INTEGER I 

mmnnmmm 
'/.    TERM #9    '/. 
*/. betatau = 500 */. 
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NOTE: THIS IS THE FILE term9500.out CREATED FROM THE BINARY 
FILE term9500.mat USING MATLAB INTERACTIVE COMMANDS. ALL 
TEXT PRECEDED BY A */. WAS ADDED LATER USING A TEXT 
EDITOR. 
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•/. THESIS COMPUTER WORK 
'/. 
'/. 
•/. 
'/.   
'/. I I 
'/. I     TERM #9     I 
'/. I  betatau = 1000  I 
7. I I 
'/. 
'/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #9 
'/. FOR THE VALUE OF betatau = 1000. WE WILL COMPUTE 
'/. FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
'/. betatau = 1000 are I = [5 6 9 20] . WE WILL COMPUTE THE VALUE OF 
'/. TERM #9 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
'/. ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
'/. BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
'/. WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
'/. ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
*/. (have a positive summation index) BEING PACKED WITH l'S. THIS 
*/. IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
X LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
'/. (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
•/. DUMP ALL TWELVE VALUES TO A FILE CALLED term91k.mat. 
'/. SINCE THE FILE IS IN A BINARY FORMAT WE WILL USE MATLAB 
'/. INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
•/. HARDCOPY RESULTS. AFTER THIS IS ALL DONE WE WILL 
•/. USE THESE VALUES LATER, IN ANOTHER PROGRAM TO COMPUTE THE 
'/. DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
•/. VARIOUS SIGNAL TO NOISE RATIOS. 
y. 
'/.  JOHN A. STUDER DATE LAST MODIFIED: 28 SEP 94 
•/. CPT, U.S. ARMY 
'/. 550-53-7181 
y.y//.yx/x/x/x/x/.y//.yxm 
format short e 
rho = 0.99; 
betatau = 1000; 
I = [5 6 9 20] ; 
M = [198 164 110 48]; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
term9sum(i) = 0; 
for ct = l:M(i) 

for g =  l:betatau-l 
for m =  1: betatau 

if i-l <    g 
term9sum(i)   = term9sum(i)   +   ((rho~(g+(m-l)))/(pi*k(ct)... 

*I(i)))*sin(2*pi*k(ct)*I(i)*((g-(m-l))... 
/betatau)); 
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end 
end 

end 
if ct == M(i)/2 

term91kleft(i) = term9sum(i); 
end 

end 
term91klr(i) = term9sum(i); 
term91kright(i) = term91klr(i)-term91kleft(i); 

end 
save term91k term91kleft term91kright term91klr 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

>> load term91k.mat 
>> who 

Your variables are: 

term91kleft   term91klr     term91kright 

» term91kleft 

term91kleft = 

155.3047  109.6350  49.5986   9.9519     '/. CASE: (b-=l,b+=0) 

>> term91kright 

term91kright = 

155.3047  109.6350  49.5986   9.9519     */. CASE: (b-=0,b+=l) 

» term91klr 

term91klr = 

310.6094 219.2701  99.1971   19.9038     '/. CASE: (b-=l,b+=l) 

» 

'/.  1 = 5    1 = 6    1 = 9    1 = 20 
y.           

*/. VALUES OF THE NORMALIZED CHANNEL SPACING INTEGER I 

mmmmmm 
y.     TERM #9      y. 
'/, betatau = 1000 */. 
mnmnmrnn 

NOTE: THIS IS THE FILE term91k.out CREATED FROM THE 
BINARY FILE term91k.mat USING MATLAB INTERACTIVE 
COMMANDS. ALL TEXT PRECEDED BY A */. WAS ADDED LATER 
USING A TEXT EDITOR. 
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m:i:i:i:mvixm:i:im 
THESIS COMPUTER WORK 

I I 
I TERM #9 I 
I betatau = 1500 I 
I I 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #9 
FOR THE VALUE OF betatau = 1500. WE WILL COMPUTE 
FOR THE FOUR VALUES OF I (AN INTEGER). THE VALUES OF I FOR 
betatau = 1500 are I = [7 9 12 20]. WE WILL COMPUTE THE VALUE OF 
TERM #9 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
(have a positive summation index) BEING PACKED WITH l'S. THIS 
IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
(b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
DUMP ALL TWELVE VALUES TO A FILE CALLED term915k.mat. 
SINCE THE FILE IS IN A BINARY FORMAT WE WILL USE MATLAB 
INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
HARDCOPY RESULTS. AFTER THIS IS ALL DONE WE WILL 
USE THESE VALUES LATER, IN ANOTHER PROGRAM TO COMPUTE THE 
DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER DATE LAST MODIFIED: 28 SEP 94 
CPT, U.S. ARMY 
550-53-7181 

vi:i:i:i:wi:im^^^^ 
format short e 
rho = 0.99; 
betatau = 1500; 
I = [7 9 12 20] ; 
M = [212 164 124 74]; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
term9sum(i) = 0; 
for ct = l:M(i) 

for g =  l:betatau-l 
for m =  1:betatau 

if i-l <    g 
term9sum(i)  = term9sum(i)   +  ((rho~(g+(m-l)))/(pi*k(ct)... 

*I(i)))*sin(2*pi*k(ct)*I(i)*((g-(m-l))... 
/betatau)); 
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end 
end 

end 
if ct == M(i)/2 

term915kleft(i) = term9sum(i); 
end 

end 
term915klr(i) = term9sum(i); 
term915kright(i) = term915klr(i)-term915kleft(i); 

end 
save term915k term915kleft term915kright term915klr 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

» load term915k 
>> who 

Your variables are: 

term915kleft 
term915klr 

term915kright 

» term915kleft 

term915kleft = 

117.9019  73.0900 

» term915kright 

term915kright = 

117.9019  73.0900 

» term915klr 

term915klr = 

235.8037  146.1800 

41.7221   15.0822  '/. CASE: (b-=l,b+=0) 

41.7221   15.0822  '/. CASE: (b-=0,b+=l) 

83.4441  30.1644  */. CASE: (b-=l,b+=l) 

1 = 7 1 = 9 I = 12   I = 20 

VALUES OF NORMALIZED CHANNEL SPACING INTEGER I 

tnnnnmnmn 
'/. TERM #9    •/. 
'/, betatau = 1500 '/. 
v/:w/x/xw/x/x/x/:a 

NOTE: THIS IS THE FILE term915k.out CREATED FROM THE 
BINARY FILE term915k.mat USING MATLAB INTERACTIVE 
COMMANDS. ALL TEXT PRECEDED BY A '/. WAS ADDED LATER 
USING A TEXT EDITOR. 
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y.y//.y//x/x/x/x/.yx/.y.y//xm 
'/, THESIS COMPUTER WORK 
'/. 
'/. 
'/. 
'/. _ _  _  _ 
V. I I 
'/. I     TERM #9     | 
*/. I  betatau = 2000  I 
'/. I I 

*/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #9 
'/. FOR THE VALUE OF betatau = 2000. WE WILL COMPUTE 
*/. FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
'/. betatau = 2000 are I = [8 9 12 20] . WE WILL COMPUTE THE VALUE OF 
'/. TERM #9 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
'/. ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
7. BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
'/. WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
'/. ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
'/. (have a positive summation index) BEING PACKED WITH l'S. THIS 
'/. IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
*/. LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
'/. (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
*/. DUMP ALL TWELVE VALUES TO A FILE CALLED term92k.mat. 
*/. SINCE THE FILE IS IN A BINARY FORMAT WE WILL USE MATLAB 
'/. INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
'/. HARDCOPY RESULTS. AFTER THIS IS ALL DONE WE WILL 
'/. USE THESE VALUES LATER, IN ANOTHER PROGRAM TO COMPUTE THE 
*/. DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
*/. VARIOUS SIGNAL TO NOISE RATIOS. 
*/. 
'/. JOHN A. STUDER DATE LAST MODIFIED: 28 SEP 94 
•/. CPT, U.S. ARMY 
•/. 550-53-7181 
o/ c/ •/ •/ •/ o/1/1/ o/ c/ •/ •/ •/ o/ •/ ii o/ o/ o/ o/ o/«/»/»/ o/ o/ •/ o/ o/»/«/ o/ •/ o/»/ •/«/«/ •/ •/ •/ •/ •/ •/ •/1/»/1/»/ •/ 0/ 0/ •/«/ •/ •/ 0/»/»/ 0/ 0/ HI HI •/ •/ 0/ •/ •/ •/ •/ 0/«/«/ •/ 0/ 0/ •/1, 

format short e 
rho = 0.99; 
betatau = 1500; 
I = [8 9 12 20]; 
M = [248 220 164 98]; 
for i = 1:4 

k = C-M(i)/2:-l l:M(i)/2]; 
term9sum(i) = 0; 
for ct = l:M(i) 

for g =  l:betatau-l 
for m =  1:betatau 

if m-1  <    g 
term9sum(i)  = term9sum(i)   +   ((rho~(g+(m-l)))/(pi*k(ct)... 

*I(i)))*sin(2*pi*k(ct)*I(i)*((g-(m-l)).. 
/betatau)); 
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end 
end 

end 
if ct == M(i)/2 

term92kleft(i) = term9sum(i); 
end 

end 
term92klr(i) = term9sum(i); 
term92kright(i) = term92klr(i)-term92kleft(i); 

end 
save term92k term92kleft term92kright term92klr 
exit 
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<MATLAB(R)> 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

>> load term92k.mat 
>> who 

term92kright 

Your variables are: 

term92kleft   term92klr 

» term92kleft 

term92kleft = 

91.5258  73.0261  41.6758  15.0544 

» term92kright 

term92kright = 

91.5258  73.0261  41.6758  15.0544 

» term92klr 

term92klr = 

183.0515  146.0523  83.3516  30.1088 

>> 

1 = 8     1 = 9 

■/. CASE: (b-=l,b+=0) 

*/. CASE: (b-=0,b+=l) 

*/. CASE: (b-=l,b+=l) 

I = 12 I = 20 

VALUES OF THE NORMALIZED CHANNEL SPACING INTEGER I 

mmnnmnm 
y.       TERM #9   y. 
y. betatau = 2000 '/. 
y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y. 

NOTE: THIS IS THE FILE term92k.out CREATED FROM THE 
BINARY FILE term92k.mat USING MATLAB INTERACTIVE 
COMMANDS. ALL TEXT PRECEDED BY A '/. WAS ADDED LATER 
USING A TEXT EDITOR. 
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THESIS COMPUTER WORK 

1 
I             TERM 
I       betatau 
1       

1 
#10           I 
= 500       | 
 1 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #10 
FOR THE VALUE OF betatau = 500. WE WILL COMPUTE 
FOR THE FOUR VALUES OF I (AN INTEGER). THE VALUES OF I FOR 
betatau = 500 are I = [4 5 8 20]. WE WILL COMPUTE THE VALUE OF 
TERM #10 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
(have a positive summation index) BEING PACKED WITH l'S. THIS 
IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
(b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
DUMP ALL TWELVE VALUES TO A FILE CALLED terml0500.mat. 
SINCE THE FILE IS IN A BINARY FORMAT, WE WILL USE MATLAB 
INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
HARDCOPY RESULTS. AFTER THIS IS ALL DONE, WE WILL 
USE THESE VALUES LATER , IN ANOTHER PROGRAM, TO COMPUTE THE 
DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER DATE LAST MODIFIED: 29 SEP 94 
CPT, U.S. ARMY 
550-53-7181 

vv»/vvv«/vvv«/»/vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvyvvvyvvvvvvyvv.V.V-V«/V'/*///.V'/V.V////y'/'/'y 

format  short  e 
rho = 0.99; 
betatau = 500; 
I  =   [4 5  8  20] ; 
M =   [124  98 60  24]; 
for i  =  1:4 

k =   [-M(i)/2:-l  l:M(i)/2]; 
termlOsum(i)   = 0; 
for ct =  l:M(i) 

for g = betatau:(2*betatau)-l 
for m =  1:betatau 

termlOsum(i)   = termlOsum(i)  +  ((rho~(g+(m-l)))/... 
(pi*k(ct)*I(i)))*(sin(2*pi*k(ct)*I(i)*... 
(l-((m-l)/betatau)))-sin(((2*pi*k(ct)*I(i))/. 
betatau)*(max(g-betatau,m-l)-(m-l)))); 
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end 
end 
if ct == M(i)/2 

terml05001eft(i) = termlOsum(i); 
end 

end 
terml05001r(i) = termlOsum(i); 
terml0500right(i) = terml05001r(i)-terml05001eft(i); 

end 
save terml0500 terml05001eft terml0500right terml05001r 
exit 
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< H A T L A ß (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

» load terml0500.mat 
>> who 

Your variables are: 

terml05001eft 
terml05001r 

terml0500right 

» terml05001eft 

terml05001eft = 

-2.4375  -1.5672  -0.6099  -0.0927  '/. CASE: (b-=l,b+=0) 

» terml0500right 

terml0500right = 

-2.4375  -1.5672  -0.6099  -0.0927  '/, CASE: (b-=0,b+=l) 

» terml05001r 

terml05001r = 

-4.8750  -3.1343  -1.2197 

» 

1 = 4    1 = 5    1 = 8 

-0.1854  */. CASE: (b-=l,b+=l) 

I = 20 

VALUES OF NORMALIZED CHANNEL SPACING INTEGER I 

nnnnnnmxm 
7, TERM #10   '/. 
'/. betatau = 500 '/. 

NOTE: THIS IS THE FILE terml0500.out CREATED FROM THE BINARY FILE 
terml0500.mat USING MATLAB INTERACTIVE COMMANDS.  ALL TEXT 
PRECEDED BY A '/. WAS ADDED LATER USING A TEXT EDITOR. 
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7:i:/:/:/:t:imi^^^ 
7. THESIS  COMPUTER WORK 
*/. 
'/. 
•/. 
'/. ^ (                                              ( 

'/. I     TERM #10    | 
'/. I  betatau = 1000  I 
7. I I 
7. 
'/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #10 
'/. FOR THE VALUE OF betatau = 1000. WE WILL COMPUTE 
'/. FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
'/. betatau = 1000 are I = [5 6 9 20] . WE WILL COMPUTE THE VALUE OF 
'/. TERM #10 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
'/. ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
'/. BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
'/. WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
'/. ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
'/. (have a positive summation index) BEING PACKED WITH l'S. THIS 
'/. IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
*/. LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
*/. (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
7. DUMP ALL TWELVE VALUES TO A FILE CALLED termlOlk.mat. 
'/. SINCE THE FILE IS IN A BINARY FORMAT, WE WILL USE MATLAB 
'/. INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
7. HARDCOPY RESULTS. AFTER THIS IS ALL DONE, WE WILL 
*/. USE THESE VALUES LATER , IN ANOTHER PROGRAM, TO COMPUTE THE 
'/. DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
'/. VARIOUS SIGNAL TO NOISE RATIOS. 
*/. 
'/. JOHN A. STUDER                  DATE LAST MODIFIED: 29 SEP 94 
7. CPT, U.S. ARMY 
'/. 550-53-7181 
V'/ V •/ •/ •/ V V •/ •/ •/ •/ •/ V V'/ •/ •/ V •/ •/ •/ •/'/'/'/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V °/ •/ •/ •/ V •/»/ •/ •/ V V •/ •/ V •/ •/ •/ •/ •/ 

format short e 
rho = 0.99; 
betatau =  1000; 
I  =   [5  6  9  20] ; 
M = [198 164 110 48] ; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
termlOsum(i) = 0; 
for ct = l:M(i) 

for g = betatau:(2*betatau)-l 
for m =  1:betatau 

termlOsum(i)   = termlOsum(i)   +   ((rho"(g+(m-l)))/... 
(pi*k(ct)*I(i)))*(sin(2*pi*k(ct)*I(i)*... 
(l-((m-l)/betatau)))-sin(((2*pi*k(ct)*I(i))/. 
betatau)*(max(g-betatau,m-l)-(m-l)))); 
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end 
end 
if ct == M(i)/2 

termlOlkleft(i) = termlOsum(i); 
end 

end 
termlOlklr(i) = termlOsum(i); 
termlOlkright(i) = terml01klr(i)-terml01kleft(i); 

end 
save termlOlk termlOlkleft termlOlkright termlOlklr 
exit 
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(c) Copyright 1984-93 The MathWorks, 
All Rights Reserved 

Version 4.1 
Jun 15 1993 

Inc. 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

>> load termlOlk.mat 
>> who 

Your variables are: 

termlOlkleft 
termlOlklr 

termlOlkright 

» termlOlkleft 

termlOlkleft = 

-0.0200  -0 0142 -0.0064  -0.0013   '/. CASE: (b- -=1 ,b+=0) 

» termlOlkrighl 

termlOlkright = 

-0.0200  -0 0142 -0.0064  -0.0013   */. CASE: (b- ■=0 ,b+=l) 

» termlOlklr 

termlOlklr = 

-0.0401  -0. 0283 -0.0128  -0.0026   */. CASE: (b- ■=1 ,b+=l) 

>> 
. 

i 
  
 i

—
i 

i 
  
  

ii 

1  
  

  
CJ

l 

1  
   

  
M

 

= 6 1=9    I = 20 

*/. VALUES OF THE NORMALIZED CHANNEL SPACING INTEGER I 

,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.•/.,/.,/.,/.,/.,/.,/.,/. 
*/.   TERM #10   */. 
*/. betatau = 1000 */. 
,/.•/.,/.,/.,/.•/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/. 

NOTE THIS IS THE FILE termlOlk.out 
BINARY FILE termlOl.mat USING 
COMMANDS. ALL TEXT PRECEDED B^ 
USING A TEXT EDITOR. 

CREATED FROM THE 
MATLAB INTERACTIVE 

'  A '/. WAS ADDED LATER 
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THESIS COMPUTER WORK 

TERM #10 
betatau = 1500 

COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #10 
FOR THE VALUE OF betatau = 1500. WE WILL COMPUTE 
FOR THE FOUR VALUES OF I (AN INTEGER). THE VALUES OF I FOR 
betatau = 1500 are I = [7 9 12 20]. WE WILL COMPUTE THE VALUE OF 
TERM #10 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
(have a positive summation index) BEING PACKED WITH l'S. THIS 
IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
(b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
DUMP ALL TWELVE VALUES TO A FILE CALLED terml015k.mat. 
SINCE THE FILE IS IN A BINARY FORMAT, WE WILL USE MATLAB 
INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
HARDCOPY RESULTS. AFTER THIS IS ALL DONE, WE WILL 
USE THESE VALUES LATER , IN ANOTHER PROGRAM, TO COMPUTE THE 
DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
VARIOUS SIGNAL TO NOISE RATIOS. 

JOHN A. STUDER DATE LAST MODIFIED: 29 SEP 94 
CPT, U.S. ARMY 
550-53-7181 

•/ •/ •/ •/ •/ 1/ •/ 0/ »/ •/ 0/ «/ •/ •/ 0/ •/ •/ •/ •/ •/ 0/ 0/ •/ I, 

format short e 
rho = 0.99; 
betatau =  1500; 
I =   [7 9  12 20]; 
M = [212 164 124 74]; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
termlOsum(i) = 0; 
for ct = l:M(i) 

for g = betatau:(2*betatau)-l 
for m =  1:betatau 

termlOsum(i)   = termlOsum(i)   +  ((rho"(g+(m-l)))/... 
(pi*k(ct)*l(i)))*(sin(2*pi*k(ct)*I(i)*... 
(l-((m-l)/betatau)))-sin(((2*pi*k(ct)*I(i))/. 
betatau)*(max(g-betatau,m-l)-(m-l)))); 

end 
end 
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if et == M(i)/2 
terml015kleft(i) = termlOsum(i); 

end 
end 
terml015klr(i) = termlOsum(i); 
terml015kright(i) = terml015klr(i)-terml015kleft(i); 

end 
save terml015k terml015kleft terml015kright terml015klr 
exit 
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<MATLAB (R) > 
(c) Copyright 1984-93 The MathWorks, Inc. 

All Rights Reserved 
Version 4.1 
Jun 15 1993 

Commands to get started: intro, demo, help help 
Commands for more information: help, whatsnew, info, subscribe 

» load terml015k.mat 
>> who 

Your variables are: 

terml015kleft 
terml015klr 

terml015kright 

» terml015kleft 

terml015kleft = 

1.0e-04 * 

-1.0000  -0.6199 

» terml015kright 

terml015kright = 

1.0e-04 * 

-1.0000  -0.6199 

» terml015klr 

terml015klr = 

1.0e-03 * 

-0.2000  -0.1240 

» 

1 = 7    1 = 9 

-0.3539  -0.1279  '/. CASE: (b-=l,b+=0) 

-0.3539  -0.1279  */. CASE: (b-=0,b+=l) 

-0.0708  -0.0256  '/. CASE: (b-=l,b+=l) 

I = 12   I = 20 

VALUES OF NORMALIZED CHANNEL SPACING INTEGER I 
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innnvi:m:m:i:i:i.% 
'/.    TERM #10   •/. 
'/. betatau = 1500 */. 
y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y. 

NOTE: THIS IS THE FILE terml015k.out CREATED FROM THE 
BINARY FILE terml015k.mat USING MATLAB INTERACTIVE 
COMMANDS. ALL TEXT PRECEDED BY A % WAS ADDED LATER 
USING A TEXT EDITOR. 
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nuT/x/:/:ayxanm.7xav 
y, THESIS COMPUTER WORK 
7. 
'/. 
'/. 
y.   
y. i                        i 
y! I     TERM #10    I 
•/, I  betatau = 2000  I 
y. i i 
y. 
*/. COMMENTS: THE IDEA OF THIS PROGRAM IS TO COMPUTE TERM #10 
7, FOR THE VALUE OF betatau = 2000. WE WILL COMPUTE 
y, FOR THE FOUR VALUES OF I (AN INTEGER) . THE VALUES OF I FOR 
y. betatau = 2000 are I = [8 9 12 20] . WE WILL COMPUTE THE VALUE OF 
y, TERM #10 THREE TIMES FOR EACH CORRESPONDING VALUE OF I. ONCE FOR 
y, ALL M/2 OF THE LOWER ACI CHANNELS (have negative summation index) 
•/, BEING PACKED WITH l'S AND THE UPPER ACI CHANNELS ALL BEING PACKED 
7, WITH O'S. THIS IS THE CASE: (b-=l,b+=0). ONCE FOR ALL THE LOWER 
% ACI CHANNELS BEING PACKED WITH ZERO'S AND THE UPPER ACI CHANNELS 
'/, (have a positive summation index) BEING PACKED WITH l'S. THIS 
y. IS THE CASE: (b-=0,b+=l). FINALLY ONCE FOR BOTH THE UPPER AND 
y. LOWER ACI CHANNELS BEING PACKED WITH l'S. THIS IS THE CASE: 
% (b-=l,b+=l). WE WILL USE BACKGROUND PROCESSING WHICH WILL 
•/, DUMP ALL TWELVE VALUES TO A FILE CALLED terml02k.mat. 
y, SINCE THE FILE IS IN A BINARY FORMAT, WE WILL USE MATLAB 
'/, INTERACTIVE COMMANDS AND THE TEXT EDITOR TO PRODUCE READABLE 
•/, HARDCOPY RESULTS. AFTER THIS IS ALL DONE, WE WILL 
•/, USE THESE VALUES LATER , IN ANOTHER PROGRAM, TO COMPUTE THE 
% DETECTION STATISTICS AND PROBABILITIES OF BIT ERROR FOR THE 
•/. VARIOUS SIGNAL TO NOISE RATIOS. 
y. 
y. JOHN A. STUDER                  DATE LAST MODIFIED: 28 NOV 94 
•/. CPT, U.S. ARMY 
•/. 550-53-7181 
o/«/./././././1/./ o/././»/./ o/ o/ o/ oi oi oi ot./ v o/ o/ o/././ o/./0/ 0/ 0/ 0/./1/«/././«/./ 0/ 0/ 0/ 0/ 0/ 0/ 0/0/././ 0/1/./ 0/././ •/ 0/./ y 0/././ 0/ 0/./«/ •/ •/ 0/./ 0/«/1/1/»/1/ 

format  short e 
rho = 0.99; 
betatau = 2000; 
I =   [8 9  12 20]; 
M = [248 220 164 98]; 
for i = 1:4 

k = [-M(i)/2:-l l:M(i)/2]; 
termlOsum(i) = 0; 
for ct = l:M(i) 

for g = betatau:(2*betatau)-l 
for m =  l:betatau 

termlOsum(i)   = termlOsum(i)  +  ((rho"(g+(m-l)))/... 
(pi*k(ct)*I(i)))*(sin(2*pi*k(ct)*I(i)*... 
(l-((m-1)/betatau)))-sin(((2*pi*k(ct)*I(i))/. 
betatau)*(max(g-betatau,m-l)-(m-1)))); 
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end 
end 
if ct == M(i)/2 

terml02kleft(i) = termlOsum(i); 
end 

end 
terml02klr(i) = termlOsum(i); 
terml02kright(i) = terml02klr(i)-terml02kleft(i); 

end 
save terml02k terml02kleft terml02kright terml02klr 
exit 
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» terml02kleft8 

terml02kleft8 = 

-6.5584e-07 

» terml02kright8 

terml02kright8 = 

-6.5584e-07 

» terml02klr8 

terml02klr8 = 

-1.3117e-06 

» 

'/. CASE: (b-=l,b+=0) 

'/. CASE: (b-=0,b+=l) 

mxixixi. 
l  I = 8 y. 
WXIXIXL 

'/. CASE: (b-=l,b+=l) 

» terml02kleft9 

terml02kleft9 = 

-5.2745e-07 

» terml02kright9 

terml02kright9 = 

-5.2745e-07 

» terml02klr9 

terml02klr9 = 

-1.0549e-06 

» 

*/. CASE: (b-=l,b+=0) 

'/. CASE: (b-=0,b+=l) 

vixixixn 
y. i = 9 •/. 
vixinm. 

y. CASE: (b-=l,b+=l) 

» terml02kleftl2 

terml02kleftl2 = 

-3.0548e-07 

» terml02krightl2 

terml02krightl2 = 

-3.0548e-07 

•/. CASE: (b-=l,b+=0) 

•/. CASE: (b-=0,b+=l) 

'/x/x/xan 
y. i = 12 y. 
w/x/x/xa 
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» terml02klrl2 

terml02klrl2 = 

-6.1096e-07 

» 

'/. CASE: (b-=l,b+=l) 

» terml02kleft20 

terml02kleft20 = 

-1.1211e-07 

» terml02kright20 

terml02kright20 = 

-1.1211e-07 

» terml02klr20 

terml02klr20 = 

-2.2423e-07 

» 

'/. CASE:   (b-=l,b+=0) 

7. CASE:   (b-=0,b+=l) 

•/. CASE:   (b-=l,b+=l) 

7:1:1:1:1:1:1:11% 
% I = 20 •/. 

mnnnnnnm 
7. TERM #10   •/. 
'/. betatau = 2000 */. 
m:annnm:an 

NOTE: THERE WERE SEVERAL MISHAPS IN COMPUTING THIS TERM. POWER OUTAGES, 
MY ACCOUNT BEING SHUT OFF,ETC. IN THE INTERESTS OF BEING ABLE TO 
COMPUTE RESULTS IN A TIMELY MANNER, FOUR COPIES OF THE PROGRAM FOR 
TERM #10, betatau = 2000 WERE MADE. THE I AND M BLOCK WERE MODIFIED 
TO HOLD ONLY ONE VALUE OF I/M, AND THE OUTER LOOP WAS REDUCED TO 
ONE ITERATION. THEN, THE FOUR PROGRAMS WERE RUN ON FOUR SEPARATE 
WORKSTATIONS. IN THE INTERESTS OF BREVITY WE ONLY SHOW THE SINGLE 
PROGRAM FOR COMPUTING THE TERM AS THE FOUR COPIES ARE ESSENTIALLY 
THE EXACT SAME PROGRAM BUT THEY DO ONLY ONE OUTER LOOP EACH. 
THE RESULTS OF THE FOUR PROGRAMS ARE TABULATED HERE USING THE 
A TEXT EDITOR. 
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THESIS COMPUTER WORK 

GENERATION OF GRAPHS 
FOR 

betatau = 500 

DATE: 19 OCTOBER 1994 

COMMENTS: THIS PROGRAM CONTAINS THE RESULTS OF ALL TEN TERMS OF 
APPENDIX B RESULTING IN THE PROGRAM PRODUCING A 
COMPLETE, ACCURATE GRAPH OF THE SYSTEM'S PROBABILITY 
OF BIT ERROR FOR ALL FOUR VALUES OF I. 
I = [4 5 8 20] 

format short e 
rho = 0.99; 
c = (l-rho)"2; 
I = [4 5 8 20] ; 
M = [124 98 60 24]; 
bitmatrix =[0 00; 001; 010; Oil; 100; 101; 110; 111]; 

term5 = [1.5423e+03 0.9419e+03 0.3307e+03 0.0431e+03 
1.5423e+03 0.9419e+03 0.3307e+03 0.0431e+03 
1.3825e+03 0.9001e+03 0.3576e+03 0.0580e+03]; 

term8 = [-3.7098e+02 -2.3852e+02 -9.2820e+01 -1.4109e+01 
-3.7098e+02 -2.3852e+02 -9.2820e+01 -1.4109e+01 
-7.4196e+02 -4.7703e+02 -1.8564e+02 -2.8217e+01] ; 

term9 = [125.1608 80.4704 31.3156 4.7599 
125.1608 80.4704 31.3156 4.7599 
250.3216 160.9408 62.6313 9.5199]; 

termlO = [-2.4375 -1.5672 -0.6099 -0.0927 
-2.4375 -1.5672 -0.6099 -0.0927 
-4.8750 -3.1343 -1.2197 -0.1854]; 

for ct = 1:4 
for i = 1:8 

for boo = [1 0] 
XI = boo*c*7.0510e+03; 
X2 = bitmatrix(i,3)*c*959.5662; 
X3 = bitmatrix(i,3)*c*1.2211e+01; 
X4 = bitmatrix(i,3)*c*3.0440e-01; 
if bitmatrix(i,l)==l & bitmatrix(i,2)==0 

X5 = c*term5(l,ct); 
elseif bitmatrix(i,l)==0 & bitmatrix(i,2)==l 

X5 = c*term5(2,ct); 
elseif bitmatrix(i,1)==1 & bitmatrix(i,2)==l 

X5 = c*term5(3,ct); 
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else 
X5 = 0; 

end 
X6 = boo*bitmatrix(i,3)*c*1.8585e+03; 
X7 = boo*bitmatrix(i,3)*c*9.2657e+01; 
if boo == 0 

X8 = 0; 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 

X8 = c*term8(l,ct); 
elseif bitmatrix(i,l)==0 & bitmatrix(i,2)==l 

X8 = c*term8(2,ct); 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==l 

X8 = c*term8(3,ct); 
else 

X8 = 0; 
end 
if bitmatrix(i,3) == 0 

X9 = 0; 
elseif bitmatrix(i,l)==l & bitmatrix(i)2)==0 

X9 = c*term9(l,ct); 
elseif bitmatrix(i,l)==0 & bitmatrix(i,2)==l 

X9 = c*term9(2,ct); 
elseif bitmatrix(i,1)==1 & bitmatrix(i,2)==l 

X9 = c*term9(3,ct); 
else 

X9 = 0; 
end 
if bitmatrix(i,3) ==0 

X10 = 0; 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 

X10 = c*termlO(l,ct); 
elseif bitmatrix(i,1)==0 & bitmatrix(i,2)==l 

X10 = c*terml0(2,ct); 
elseif bitmatrix(i,1)==1 & bitmatrix(i,2)==l 

X10 = c*terml0(3,ct); 
else 

X10 = 0; 
end 
INTERSUM = X1+X2+X3+X4+X5+X6+X7+X8+X9+X10; 
if boo==l 

XlBETA(ct,i) = INTERSUM; 
else 

X0BETA(ct,i) = INTERSUM; 
end 

end 
end 

XlMIN(ct) = min(XlBETA(ct,:)); 
XOMAX(ct) = max(XOBETA(ct,:)); 
VT(ct) = (XOMAX(ct) + XlMIN(ct))/2; 
end 
RPSQR_TDIVNO_DB = 10:.01:20; 
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RPSQR.TDIVNO = 10."(RPSQR_TDIVNO_DB*0.10); 
SINGCHAN = 0.5*erfc(RPSQR_TDIVN0/8~0.5); 
for ct = 1:4 

PE(ct,1:1001)   = zeros(l.lOOl); 

for i  =  1:8 
PE(ct,:)=PE(ct,:)+0.25*erfc((RPSQR_TDIVN0/2-0.5)*(XlBETA(ct,i)-VT(ct))) 

+0.25*erfc((RPSQR_TDIVN0/2~0.5)*(VT(ct)-X0BETA(ct,i))); 
end 

end 
PEFINAL = PE/8; 
figure(1) 
semilogy(RPSQRJTDIVNO.DB,SINGCHAN,'--\RPSQR_TDIVN0_DB,PEFINAL(1,:),... 

RPSQR_TDIVNO_DB,PEFINAL(2,:),RPSQR_TDIVN0_DB,PEFINAL(3,:),... 
RPSQR_TDIVNO_DB,PEFINAL(4,:)) 

xlabeK'Z   (dB)'); 
ylabel('Pb'); 
axis([lO  17  10"(-15)   1]) 
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•/. 
'/. THESIS COMPUTER WGRK 
7. 
7. GENERATION OF GRAPHS 
'/. FOR 
'/. betatau = 1000 
'/. 
'/. DATE: 21 OCTOBER 1994 
7. 
7.   COMMENTS: THIS GRAPHING PROGRAM DOES NOT CONTAIN THE RESULTS FOR 
7. TERM #5, APPENDIX B DUE TO AN INABILITY TO ARRIVE AT A 
7. SOLUTION. THERE WERE MEMORY PROBLEMS WHEN A MATRIX SOLUTION 
7. WAS TRIED TO SPEED CALCULATION OF THIS TERM, AND THE 
7. TIME REQUIRED TO CALCULATE USING SIMPLE LOOPS WAS 
7. PROHIBITIVE. THUS, ON THE RESULTING GRAPH PRODUCED 
7. ONLY THE I = 20 TRACE IS ACCURATE IN PREDICTING 
7. THE SYSTEM'S PROBABLILITY OF BIT ERROR. THIS IS BECAUSE 
7. AT I = 20, THE EFFECTS OF ADJACENT CHANNEL INTERFERENCE (ACI) 
7. ARE NEGLIGABLE. 
7. 
V V V •/ V V V'/ V •/ V •/ V V V V •/ V V •/ V •/ •/ V V V V •/»/ •/ •/ V V •/ •/ •/ •/ •/ •/ •/ •/ •/ V V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ "I •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ 

rho = 0.99; 
c = (l-rho)~2; 
I = [5 6 9 20] ; 
M = [198 164 110 48]; 
bitmatrix =[0 00; 001; 010; Oil; 100; 101; 110; 111]; 

term8 = [-464.3344 -327.7899 -148.2912 -29.7545 
-464.3344 -327.7899 -148.2912 -29.7545 
-928.6688 -655.5798 -296.5824 -59.5090]; 

term9 = [155.3047 109.6350 49.5986 9.9519 
155.3047 109.6350 49.5986 9.9519 
310.6094 219.2701 99.1971 19.9038]; 

termlO = [-0.0200 -0.0142 -0.0064 -0.0013 
-0.0200 -0.0142 -0.0064 -0.0013 
-0.0401 -0.0283 -0.0128 -0.0026]; 

for ct = 1:4 
for i = 1:8 

for boo = [1 0] 
XI = boo*c*8.5126e+03; 
X2 = bitmatrix(i,3)*c*492.4271; 
X3 = bitmatrix(i,3)*c*4.2917e-02; 
X4 = bitmatrix(i,3)*c*1.5865e-05; 
7. NOTE THAT THE RESULTS FOR TERM #5, APPENDIX B ARE 
7. MISSING. SEE THE COMMENTS IN THE TITLE SECTION 
7. ABOVE. 
X6 = boo*bitmatrix(i,3)*c*9.9411e+02; 
X7 = boo*bitmatrix(i,3)*c*7.3500e-01; 
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if boo == 0 
X8 = 0; 

elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 
X8 = c*term8(l,ct); 

elseif bitmatrix(i,l)==0 & bitmatrix(i,2)==l 
X8 = c*term8(2,ct); 

elseif bitmatrix(i,l)==l & bitmatrix(i,2)==1 
X8 = c*term8(3,ct); 

else 
X8 = 0; 

end 
if bitmatrix(i,3) == 0 

X9 = 0; 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 

X9 = c*term9(l,ct); 
elseif bitmatrix(i,1)==0 & bitmatrix(i,2)==l 

X9 = c*term9(2,ct); 
elseif bitmatrix(i,1)==! & bitmatrix(i,2)==1 

X9 = c*term9(3,ct); 
else 

X9 = 0; 
end 
if bitmatrix(i,3) ==0 

X10 = 0; 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 

X10 = c*termlO(l,ct); 
elseif bitmatrix(i,l)==0 & bitmatrix(i,2)==l 

X10 = c*terml0(2,ct); 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==l 

X10 = c*terml0(3,ct); 
else 

X10 = 0; 
end 
INTERSUM = X1+X2+X3+X4+X6+X7+X8+X9+X10; 
if boo==l 

XlBETA(ct,i) = INTERSUM; 
else 

XOBETA(ct.i) = INTERSUM; 
end 

end 
end 

XlMIN(ct) = min(XlBETA(ct,:)); 
XOMAX(ct) = max(XOBETA(ct,:)); 
VT(ct) = (XOMAX(ct) + XlMIN(ct))/2; 
end 
RPSQR_TDIVNO_DB = 10:.01:20; 
RPSQR.TDIVNO = 10."(RPSQR_TDIVNO_DB*0.10); 
SINGCHAN = 0.5*erfc(RPSQR_TDIVN0/8~0.5); 
for ct = 1:4 

PE(ct,1:1001) = zeros(l,1001); 
for i = 1:8 

185 



PE(ct,:)=PE(ct,:)+0.25*erfc((RPSQR_TDIVN0/2~0.5)*(XlBETA(ct,i)-VT(ct))) 
+0.25*erfc((RPSQR_TDIVN0/2~0.5)*(VT(ct)-X0BETA(ct,i))); 

end 
end 
PEFINAL = PE/8; 
figure(1) 
semilogy(RPSQR_TDIVNO_DB,SINGCHAN,'--',RPSQR_TDIVNO_DB,PEFINAL(1,:),... 

RPSQR_TDIVNO_DB,PEFINAL(2,:),RPSQR_TDIVNO_DB,PEFINAL(3,:),... 
RPSQR_TDIVNQ_DB,PEFINAL(4,:)) 

xlabeK'Z (dB)'); 
ylabel('Pb'); 
axis([lO 17 10"(-15) 1]) 
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'/. 
•/. 
i 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
•/. 

THESIS COMPUTER WORK 

GENERATION OF GRAPHS 
FOR 

betatau = 1500 

DATE: 25 OCTOBER 1994 

COMMENTS: THIS GRAPHING PROGRAM DOES NOT CONTAIN THE RESULTS FOR 
TERM #5, APPENDIX B DUE TO AN INABILITY TO ARRIVE AT A 
SOLUTION. THERE WERE MEMORY PROBLEMS WHEN A MATRIX SOLUTION 
WAS TRIED TO SPEED CALCULATION OF THIS TERM, AND THE 
TIME REQUIRED TO CALCULATE USING SIMPLE LOOPS WAS 
PROHIBITIVE. THUS, ON THE RESULTING GRAPH PRODUCED 
ONLY THE I = 20 TRACE IS ACCURATE IN PREDICTING 
THE SYSTEM'S PROBABLILITY OF BIT ERROR. THIS IS BECAUSE 
AT I = 20, THE EFFECTS OF ADJACENT CHANNEL INTERFERENCE (ACI) 
ARE NEGLIGABLE. 

«/ •/ •/ »I »I •/ 0/ 0/ 0/ •/ «/ 0/ «/ •/ •/ 0/ •/ 0/ 0/ 0/ II 0/ »/ •/ 0/ 0/ 0/ 0/ «/ 0/ 0/ », o/s 

rho  =  0.99; 
c =   (l-rho)"2; 
I =   [7 9  12 20]; 
M =   [212   164  124 74]; 
bitmatrix =   [0 0  0;   0 01; 010; Oil; 100; 101; 110; 111]; 

term8 = [-3.5253e+02 -2.1854e+02 -1.2475e+02 -4.5096e+01 
-3.5253e+02 -2.1854e+02 -1.2475e+02 -4.5096e+01 
-7.0505e+02 -4.3708e+02 -2.4950e+02 -9.0192e+0l]; 

term9 = [117.9019 73.0900 41.7221 15.0822 
117.9019 73.0900 41.7221 15.0822 
235.8037 146.1800 83.4441 30.1644]; 

termlO = [-1.0000e-04 
-1.0000e-04 
-0.2000e-03 

-0.6199e-04 -0.3539e-04 -0.1279e-04 
-0.6199e-04 -0.3539e-04 -0.1279e-04 
-0.1240e-03 -0.0708e-03 -0.0256e-03]; 

for ct = 1:4 
for i = 1:8 

for boo = [1 0] 
XI = boo*c*9.0083e+03; 
X2 = bitmatrix(i,3)*c*328.3413; 
X3 = bitmatrix(i,3)*c*1.8815e-04; 
X4 = bitmatrix(i,3)*c*7.2482e-10; 
'/. NOTE THAT THE RESULTS FOR TERM #5, APPENDIX B ARE 
'/. MISSING. SEE THE COMMENTS IN THE TITLE SECTION 
*/. ABOVE. 
X6 = boo*bitmatrix(i,3)*c*6.6331e+02; 
X7 = boo*bitmatrix(i,3)*c*5.1105e-03; 
if boo == 0 
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X8 = 0; 
elseif bitmatrixCi,1)==1 & bitmatrix(i,2)==0 

X8 = c*term8(l,ct); 
elseif bitmatrix(i,1)==0 & bitmatrix(i,2)==1 

X8 = c*term8(2,ct); 
elseif bitmatrix(i,1)==1 & bitmatrixCi,2)==1 

X8 = c*term8(3,ct); 
else 

X8 = 0; 
end 
if bitmatrix(i,3) == 0 

X9 = 0; 
elseif bitmatrixCi,1)==1 & bitmatrix(i,2)==0 

X9 = c*term9(l,ct); 
elseif bitmatrix(i,1)==0 & bitmatrix(i,2)==1 

X9 = c*term9(2,ct); 
elseif bitmatrixCi,1)==1 & bitmatrix(i,2)==l 

X9 = c*term9(3,ct); 
else 

X9 = 0; 
end 
if bitmatrixCi,3) ==0 

X10 = 0; 
elseif bitmatrixCi,1)==1 & bitmatrix(i,2)==0 

X10 = c*termlO(l,ct); 
elseif bitmatrixCi,1)==0 & bitmatrix(i,2)==l 

X10 = c*terml0(2,ct); 
elseif bitmatrixCi,1)==1 & bitmatrixCi,2)==1 

X10 = c*terml0(3,ct); 
else 

X10 = 0; 
end 
INTERSUM = X1+X2+X3+X4+X6+X7+X8+X9+X10; 
if boo==l 

XlBETACct,i) = INTERSUM; 
else 

XOBETACct.i) = INTERSUM; 
end 

end 
end 

XlMIN(ct) = min(XlBETA(ct,:)); 
XOMAX(ct) = maxCXOBETACct,:)); 
VTCct) = CXOMAX(ct) + XlMINCct))/2; 
end 
RPSQR_TDIVNO_DB = 10:.01: 20; 
RPSqR.TDIVNO = 10.~(RPSQR_TDIVN0_DB*0.10); 
SINGCHAN = 0.5*erfcCRPSQR_TDIVN0/8*0.5); 
for ct = 1:4 

PECct,1:1001) = zeros(l.lOOl); 
for i = 1:8 

PE(ct,:)=PECct,:)+0.25*erfc((RPSQR_TDIVN0/2~0.5)* CXlBETA(ct,i)-VT(ct))) 
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+0.25*erfc((RPSQR_TDIVN0/2~0.5)*(VT(ct)-X0BETA(ct,i))); 
end 

end 
PEFINAL = PE/8; 
figure(l) 
semilogy(RPSQR_TDIVNO_DB,SINGCHAN,'--',RPSQR_TDIVND_DB,PEFINAL(1,:) , . . 

RPSQR_TDIVNO_DB,PEFINAL(2,:),RPSqR_TDIVNO_DB,PEFINAL(3,:),... 
RPSQR_TDIVNO_DB,PEFINAL(4,:)) 

xlabeK'Z (dB)'); 
ylabel('Pb'); 
axis([10 17 10-(-15) 1]) 
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•/. 
•/. 
y. 
•/. 
•/. 
•/. 
y. 
y. 
y.   COMMENTS: 
7. 
y. 
y. 
•/. 
y. 
y. 
y. 
y. 
y. 
y. 
y. 
V'/ V V V V V V V V'/ V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V'/'/ V V V V V V V V V V V V V V V V V V V V V V'/ V 

rho = 0.99; 
c = (l-rho)~2; 
I = [8 9 12 20]; 
M = [248 220 164 98]; 
bitmatrix = [0 00; 001; 010; Oil; 100; 101; 110; 11 1]; 

THESIS COMPUTER WORK 

GENERATION OF GRAPHS 
FOR 

betatau = 2000 

DATE: 15 NOVEMBER 1994 

THIS GRAPHING PROGRAM DOES NOT CONTAIN THE RESULTS FOR 
TERM #5, APPENDIX B DUE TO AN INABILITY TO ARRIVE AT A 
SOLUTION. THERE WERE MEMORY PROBLEMS WHEN A MATRIX SOLUTION 
WAS TRIED TO SPEED CALCULATION OF THIS TERM, AND THE 
TIME REQUIRED TO CALCULATE USING SIMPLE LOOPS WAS 
PROHIBITIVE. THUS, ON THE RESULTING GRAPH PRODUCED 
ONLY THE I = 20 TRACE IS ACCURATE IN PREDICTING 
THE SYSTEM'S PROBABLILITY OF BIT ERROR. THIS IS BECAUSE 
AT I = 20, THE EFFECTS OF ADJACENT CHANNEL INTERFERENCE (ACI) 
ARE NEGLIGABLE. 

term8 = [-351.8931 -283.0055 -163.9044 -60.1542 
-351.8931 -283.0055 -163.9044 -60.1542 
-703.7863 -566.0110 -327.8088 -120.3084]; 

term9 = [91.5258 73.0261 41.6758 15.0544 
91.5258 73.0261 41.6758 15.0544 
183.0515 146.0523 83.3516 30.1088]; 

termlO = [-6.5584e-07 -5.2745e-07 
-6.5584e-07 -5.2745e-07 
-1.3117e-06 -1.0549e-06 

-3.0548e-07 -1.1211e-07 
-3.0548e-07 -1.1211e-07 
-6.1096e-07 -2.2423e-07]; 

for ct = 1:4 
for i = 1:8 

for boo = [1 0] 
XI = boo*c*9.2563e+03; 
X2 = bitmatrix(i,3)*c*246.2563; 
X3 = bitmatrix(i,3)*c*9.2720e-07; 
X4 = bitmatrix(i,3)*c*3.2152e-14; 
•/. NOTE THAT THE RESULTS FOR TERM #5, APPENDIX B ARE 
•/. MISSING. SEE THE COMMENTS IN THE TITLE SECTION 
•/. ABOVE. 
X6 = boo*bitmatrix(i,3)*c*4.9749e+02; 
X7 = boo*bitmatrix(i,3)*c*3.4503e-05; 
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if boo == 0 
X8 = 0; 

elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 
X8 = c*term8(l,ct); 

elseif bitmatrix(i,l)==0 & bitmatrix(i,2)==l 
X8 = c*term8(2,ct); 

elseif bitmatrix(i,l)==l & bitmatrix(i,2)==l 
X8 = c*term8(3,ct); 

else 
X8 = 0; 

end 
if bitmatrix(i,3) == 0 

X9 = 0; 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 

X9 = c*term9(l,ct); 
elseif bitmatrix(i,1)==0 & bitmatrix(i,2)==l 

X9 = c*term9(2,ct); 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==1 

X9 = c*term9(3,ct); 
else 

X9 = 0; 
end 
if bitmatrix(i,3) ==0 

X10 = 0; 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==0 

X10 = c*termlO(l,ct); 
elseif bitmatrix(i,l)==0 & bitmatrix(i,2)==l 

X10 = c*terml0(2,ct); 
elseif bitmatrix(i,l)==l & bitmatrix(i,2)==l 

X10 = c*terml0(3,ct); 
else 

X10 = 0; 
end 
INTERSUM = X1+X2+X3+X4+X6+X7+X8+X9+X10; 
if boo==l 

XlBETA(ct,i) = INTERSUM; 
else 

XOBETA(ct,i) = INTERSUM; 
end 

end 
end 

XlMIN(ct) = min(XlBETA(ct,:)); 
XOMAX(ct) = max(XOBETA(ct,:)); 
VT(ct) = (XOMAX(ct) + XlMIN(ct))/2; 
end 
RPSQR_TDIVNO_DB = 10:.01:20; 
RPSQR_TDIVNO = 10."(RPSqR_TDIVN0_DB*O.10) ; 
SINGCHAN = 0.5*erfc(RPSQR_TDIVN0/8"0.5); 
for ct = 1:4 

PE(ct,1:1001) = zeros(l,1001); 
for i = 1:8 
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PE(ct,:)=PE(ctJ:)+0.25*erfc((RPSqR_TDIVN0/2-0.5)*(XlBETA(ct,i)-VT(ct))) 
+0.25*erfc((RPSQR_TDIVN0/2~0.5)*(VT(ct)-X0BETA(ct,i))); 

end 
end 
PEFINAL = PE/8; 
figure(l) 
semilogy(RPSQR_TDIVNO_DB,SINGCHAN,'--',RPSQR_TDIVNQ_DB,PEFINAL(1,:),... 

RPSQR_TDIVNO_DB,PEFINAL(2,:),RPSQR_TDIVNO_DB,PEFINAL(3,:),... 
RPSQR_TDIVNO_DB,PEFINAL(4,:)) 

xlabeK'Z  (dB)'); 
ylabelC'Pb'); 
axis(tl0   17  10"(-15)   1]) 
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